

Argo data management
ar-um-02-01

ARGO DAC Cookbook

 Version 1.4
 May 24

th
 2013

DRAFT

Comment [RNU1]: We must ask for an ADM
reference (who provides it?)

Argo data management

Argo DAC Cookbook

Ref: ar-um-02-01

Ref ifremer: cor-do/dti-mut/02-084

Version 1.4

Authors: Megan Scanderbeg / Scripps Institution of Oceanography, Jean-Philippe Rannou / ALTRAN,

Justin Buck / BODC, Claudia Schmid / AOML, John Gilson / Scripps Institution of Oceanography

3

Argo data management Argo DAC Cookbook

Table of contents

TABLE OF CONTENTS ..3

HISTORY OF THE DOCUMENT ..7

1 INTRODUCTION ...8

1.1 COOK BOOK USAGE AND UPDATE ...9

1.2 REAL TIME TRAJ FILE EXPECTED CONTENTS ...9

1.2.1 DUPLICATED TIMES ...9

1.2.2 DATA RESOLUTION ..9

1.2.3 CYCLE NUMBER MANAGEMENT IN RT TRAJ .. 10

1.2.4 CLOCK OFFSET .. 11

2 PROFILE FILES .. 13

2.1 HOW TO REDUCE HIGH RESOLUTION PROFILES FOR TESAC DISTRIBUTION ON THE GTS ... 13

2.2 PROFILE TIME AND LOCATION .. 13

2.2.1 PROFILE TIME .. 13

2.2.2 PROFILE LOCATION ... 14

2.3 PROCESSING ARGO OXYGEN DATA AT THE DAC LEVEL ... 15

3 TRAJECTORY FILES ... 15

3.1 SURFACE FIXES ... 15

3.1.1 LAUNCH POSITION AND TIME ... 15

3.1.2 FOR ARGOS APEX FLOATS .. 15

3.1.3 ARGOS SURFACE LOCATIONS ... 15

3.1.4 IRIDIUM/GPS SURFACE LOCATIONS ... 16

3.2 HOW TO CALCULATE CYCLE TIMING VARIABLES .. 17

3.2.1 POSITIONING SYSTEM AND TRANSMISSION SYSTEM TIMES ... 19

3.2.2 TIMES OF FLOAT EVENTS ... 21

3.3 GUIDELINES FOR ARGOS MESSAGE SELECTION ... 68

4

Argo data management Argo DAC Cookbook

3.3.1 ARGOS FLOAT MESSAGE SELECTION .. 68

3.4 CTD MEASUREMENTS ... 69

3.4.1 CTD MEASUREMENTS SAMPLED DURING THE DRIFT PHASE AT PARKING DEPTH 69

3.4.2 MISCELLANEOUS CTD MEASUREMENTS .. 75

3.4.3 REPRESENTATIVE_PARK_PRESSURE .. 79

3.5 GROUNDED FLAGS .. 80

4 ANNEX A: SOME DEFINITIONS .. 81

4.1 DEFINITIONS OF ARGOS RAW DATA CONTENTS .. 81

4.2 CYCLIC REDUNDANCY CHECK ... 82

4.3 FLOAT CLOCK DRIFT AND CLOCK OFFSET .. 82

4.4 APEX ARGOS TEST/DATA MESSAGES ... 82

4.5 APEX DEEP PROFILE FIRST FLOATS.. 83

4.6 APEX TIME OF DAY FEATURE ... 83

4.7 APEX AUXILIARY ENGINEERING DATA ... 83

5 ANNEX B: TRANSMISSION END TIME ESTIMATION FOR AN APEX ARGOS FLOAT

 84

5.1 APEX FLOAT THEORETICAL FUNCTIONING .. 84

5.2 THE PARK ET AL. METHOD ... 85

5.3 THE PROPOSED METHOD .. 87

5.3.1 FIRST ALGORITHM: TRANSMISSION END TIMES ESTIMATED FROM THE MAXIMUM ENVELOPE OF

THE LAST MESSAGE TIMES ... 88

5.3.2 SECOND ALGORITHM: TRANSMISSION END TIMES ESTIMATED BY A METHOD THAT TAKES THE

FLOAT CLOCK OFFSET INTO ACCOUNT ... 91

5.3.3 FINAL IMPROVEMENT: TAKING THE CYCLE DURATION ANOMALIES INTO ACCOUNT 96

5.3.4 RESULTS OBTAINED IN THE ANDRO DATA SET .. 98

5.3.5 RECOMMENDED METHOD FOR REAL TIME PROCESSING .. 98

6 ANNEX C: COMPUTING TRANSMISSION START TIME FOR AND APEX ARGOS

FLOAT .. 99

6.1 TELEDYNE WEBB RESEARCH PROPOSED METHOD .. 99

5

Argo data management Argo DAC Cookbook

6.2 AN IMPROVED PROPOSED METHOD .. 100

7 ANNEX D: APEX FLOAT VERTICAL VELOCITIES ... 102

7.1 APEX FLOAT DESCENDING VELOCITY ... 102

7.2 APEX FLOAT ASCENDING VELOCITY ... 103

8 ANNEX E: INPUT PARAMETERS .. 106

9 ANNEX F: MEASUREMENT CODE TABLE .. 107

9.1 GENERAL MEASUREMENT CODE TABLE KEY .. 107

9.2 RELATIVE GENERIC CODE TABLE KEY (FROM MC MINUS 24 TO MC MINUS 1) 107

9.3 MEASUREMENT CODE TABLE ... 108

10 ANNEX G: COOKBOOK ENTRY POINT ... 111

10.1 PALACE FLOATS ... 111

10.2 APEX FLOATS (FORMAT IDS FROM 001001 TO 001025) ... 113

10.3 APEX FLOATS (FORMAT IDS FROM 001026 TO 001050) ... 117

10.4 APEX FLOATS (FORMAT IDS FROM 001051 TO 001075) ... 121

10.5 APEX FLOATS (FORMAT IDS FROM 001076 TO 001087) ... 125

10.6 PROVOR FLOATS ... 127

10.7 PROVOR-MT FLOATS ... 131

10.8 ARVOR FLOATS ... 132

10.9 SOLO FLOATS... 133

10.10 SOLO-W FLOATS.. 134

10.11 SOLO-II FLOATS .. 135

10.12 NAVIS FLOATS ... 137

10.13 NEMO FLOATS ... 138

10.14 NOVA FLOATS .. 139

10.15 NINJA FLOATS .. 140

11 ANNEX H: HOW TO CALCULATE POSITION ... 141

6

Argo data management Argo DAC Cookbook

11.1 JULD_LOCATION .. 141

11.2 POSITION_QC .. 142

12 ANNEX I: IMPLEMENTATION OF THE JAMSTEC TRAJECTORY QUALITY

CONTROL METHOD ... 143

12.1 INPUTS ... 143

12.2 ALGORITHM .. 143

12.2.1 STEP 1 ... 143

12.2.2 STEP 2 ... 143

12.2.3 STEP 3 ... 143

12.2.4 STEP 4 ... 144

12.3 SPEED TEST ... 144

12.3.1 CASE OF DIFFERENT ARGOS CLASSES ... 144

12.3.2 CASE OF IDENTICAL ARGOS CLASSES ... 144

12.4 DISTANCE TEST ... 145

12.5 DISTANCE COMPUTATION ... 146

12.5.1 MATLAB IMPLEMENTATION OF THE LPO DISTANCE ALGORITHM .. 146

12.5.2 TEST POINTS .. 148

7

Argo data management Argo DAC Cookbook

History of the document

Version Date Comment
1.0 June 2012 Original version sent around for comment

1.1 August 2012 Comments from John Gilson, Jean-Philippe Rannou, Justin Buck, Kanako Sato, Mizuho
Hoshimoto, Bernie Petolas

1.2 November 2012 Updated measurement code table to three places to allow for many more codes. Added
satellite name, error ellipse variables, condensed final questions in preparation for ADMT
meeting

1.3 February 2013 Updated with feedback from ADMT-13 meeting

1.4 April 2013 Updated format in anticipation of publication

8

Argo data management Argo DAC Cookbook

Preface

This document is still in progress. As such, there are highlighted sections of text throughout that need

to be addressed. Yellow highlighting means this is a topic open to discussion - some things are known

about this topic, but agreement needs to be reached. Green highlighting signifies a question that needs

to be answered by a float expert or float manufacturer. Red highlighting means the issue needs a

solution and nothing has been suggested yet.

One proposed entry point into this cookbook is through Annex G which consists of tables for each

float type where the rows are different float models and the columns are variables that need to be

filled. Each cell will be a link to that point in the document. The table would then allow a DAC to look

up their float model and read across that row to find out how to fill each variable. Alternately, a DAC

could go to the section of the cookbook and find out how to fill the variables without referring to the

table.

1 Introduction

This DAC cookbook is to include instructions for the DACs on how to calculate different variables for

the Argo files. It is separate from other data manuals because users do not need to understand all these

details, but that it is important that all DACs to be calculating the variables in the same manner.

Concerning Argo trajectory data specifically, correct data processing requires a good knowledge of the

float capabilities. Each float type has its own behavior and within a given type, each float version

provides specific data useful to trajectory determination. A large part of the document is based on the

work done since 2007 on Argo trajectory data in the framework of the ANDRO project by Jean-

Philippe Rannou and Michel Ollitrault. The proposed algorithms have been designed to be efficient

and robust enough to be deployed in a real time data flow without a visual check.

The entry point chosen for the present document is proposed in Annex G. In the presented tables, one

can find, for a given float version, all useful information that can be decoded, computed or estimated

from transmitted float data and a link to the concerned paragraph(s) in the document.

The float version list used has been established by the Argo Technical Coordinator, Mathieu

BELBEOCH (mbelbeoch@jcommops.org), to uniquely name each float type and version. The first

version of this list, used in this document, can be accessed at

https://docs.google.com/spreadsheet/ccc?key=0AitL8e3zpeffdENUQmszRlY3djYweGZhbnBZSU1fT

FE&usp=sharing.

The useful information list has been established by Megan SCANDERBEG

(mmscanderbeg@ucsd.edu) in the framework of the project of providing delayed mode trajectory data

to Argo users.

Many of the concerned float versions are obsolete for real time processing. However, even if these

floats are no longer active, it is important to collect and transmit how to decode the float data for

historical purposes.

The float types presented in this document include:

 The PROVOR float including PROVOR, PROVOR-MT and ARVOR floats in their Argos

and Iridium versions

 APEX

 NINJA

 SOLO

 SOLO-II

mailto:mbelbeoch@jcommops.org
https://docs.google.com/spreadsheet/ccc?key=0AitL8e3zpeffdENUQmszRlY3djYweGZhbnBZSU1fTFE&usp=sharing
https://docs.google.com/spreadsheet/ccc?key=0AitL8e3zpeffdENUQmszRlY3djYweGZhbnBZSU1fTFE&usp=sharing
mailto:mmscanderbeg@ucsd.edu

9

Argo data management Argo DAC Cookbook

 NEMO

 NAVIS

 NOVA

1.1 Cook book usage and update

The entry point of this cookbook is based on the AIC float version list and measurement codes list

(from trajectory file format 3.0).

Each new float version must be fully studied, decoded and the results analyzed (in a "trajectory" point

of view) before being added in the Annex G tables.

These detailed entry points provide each DAC with the ability to homogeneously process NetCDF

TRAJ file contents no matter whether or not the DAC has prior knowledge about a float's trajectory

data.

1.2 Real time TRAJ file expected contents

Three main types of data are expected to be stored in the real time NetCDF TRAJ files:

 Surface fixes: Argos or GPS locations of the float surface trajectory,

 Cycle timings: The dated main cycle events associated (when available) with their CTD

measurements,

 Other CTD measurements; they can be:

o Drift phase CTD measurements: possibly dated CTD measurements sampled during

the drift phase at parking depth (used to determine the deep displacement immersion),

o Miscellaneous CTD measurements: depending on float versions, many useful CTD

measurements can be provided by the instruments; in particular measurement that help

to define the vertical movements of the float and the associated rates.

1.2.1 Duplicated times

The cycle timing dates must be duplicated in the TRAJ files. They should be stored in the N_CYCLE

arrays and in the N_MEASUREMENT arrays with the associated MEASUREMENT_CODE value.

All Primary and Secondary Measurement Code (MC) events (see Annex F) that are experienced by

the float are required to be present in the N_MEASUREMENT array and redundantly in the

N_CYCLE variables. All other codes are voluntary.

If the float experiences an event but the time is not able to be determined, then a *_STATUS = '9' is

used. This indicates that it might be possible to estimate in the future and acts as a placeholder.

In the N_CYCLE variables, if the float does not experience an event then *_STATUS = 'fillvalue' is

used. Only events that are experienced by a float are recorded in the N_MEASUREMENT array so

status='fillvalue' is not used in those variables.

1.2.2 Data resolution

The decoded data can sometimes have unusual resolutions depending on the measurement code. If all

the resolutions for a <PARAM> are the same, then store the resolution in the <PARAM>:resolution

attribute.

If not all resolutions are the same, a comment attribute should be added to the concerned parameter

saying something like: "PRES resolution is 0.1 dbar, except for measurement codes x, y, and z for

10

Argo data management Argo DAC Cookbook

which PRES resolution is 1 dbar"; moreover, the global attribute “comment_on_resolution” should be

added to the NetCDF file saying “PRES parameter resolution depends on measurement code”.

Examples of differing resolutions are as follows:

 Dates: some times can have a 1 minute or a 6 minutes resolution,

 Pressures: the PROVOR technical and spy pressures are given in bars, this is also the case for

APEX descending pressure marks.

1.2.3 Cycle number management in RT TRAJ

Cycle numbers

A cycle is defined as a series of actions, including collection of data, made by a float that ends with

transmission of data. If the float fails to collect or transmit data, a cycle has not occurred and

CYCLE_NUMBER should not be incremented.

Simple checks on cycle number can be performed in real time.

For floats that provide cycle number, DACs should compare the provided cycle number with the

expected cycle number. If they agree, the provided cycle number will be stored in CYCLE_NUMBER

and CYCLE_NUMBER_INDEX variables. If they disagree, cycle number should be computed to be

coherent with time versus cycle duration. Care should be taken not to overwrite a current cycle.

For the other floats, cycle number should be computed to be coherent with time versus cycle duration.

These cycle numbers should be stored in CYCLE_NUMBER in real time.

Both CYCLE_NUMBER and CYCLE_NUMBER_INDEX need to be filled in real time. The cycle

number in CYCLE_NUMBER must match the profile cycle number, which is the number recorded in

the CYCLE_NUMBER variable in the profile file. If a mismatch is detected between a trajectory cycle

number and a profile cycle number, the trajectory cycle number must be changed to match the profile

file cycle number and replaced on the GDAC.

CYCLE_NUMBER_INDEX indicates which cycle number information is contained in that index of

the N_CYCLE array. For example, CYCLE_NUMBER_INDEX(4)=3 means the 4
th
 element of all

N_CYCLE variables is associated with the WMO_003.nc profile file. Additionally, all the elements of

the N_MEASUREMENT variables for which CYCLE_NUMBER = 3 are likewise associated with the

4
th
 N_CYCLE elements and with the WMO_003.nc profile file. This stops confusion over which index

in the N_CYCLE array corresponds to which cycle number in the N_MEASUREMENT array.

The CYCLE_NUMBER_ADJUSTED and the CYCLE_NUMBER_INDEX_ADJUSTED variables

will contain a cycle numbering which has been assessed and may be adjusted to be correct, especially

for the purpose of trajectory calculations.

If a cycle is recovered during delayed mode, DACs must choose to either (a) create a new profile file

and renumber all profile files accordingly and then rewrite the trajectory file with the changes in

CYCLE_NUMBER & CYCLE_NUMBER_INDEX to match the profile files OR (b) not create a new

profile file and add the new cycle into the CYCLE_NUMBER_ADJUSTED and

CYCLE_NUMBER_ADJUSTED_INDEX variables. Two examples of case (b) are below.

The first example is where cycle number 5 is recovered either in delayed mode. The cycle number

variables must be rewritten as follows:

CYCLE_NUMBER 1, 2, 3, 4, _, 6, 7, 8, 9, 10, 11,… ,

CYCLE_NUMBER_INDEX 1, 2, 3, 4, _, 6, 7, 8, 9, 10, 11,…,

11

Argo data management Argo DAC Cookbook

CYCLE_NUMBER_ADJUSTED 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, _

CYCLE_NUMBER_ADJUSTED_INDEX 1, 2, 3, 4, 5, 6, 7, 8 9, 10, _

Here, FillValue is added to CYCLE_NUMBER and CYCLE_NUMBER_INDEX to indicate that no

profile files exist with cycle number 5. The trajectory file must be rewritten to add in the new cycle

number information and any other information recovered for that profile.

A second example of errors that might be discovered in cycle number in delayed mode involves floats

that do not send cycle number and for which cycle number must be calculated. In this situation, there

are times when cycle numbers are incorrectly skipped. Here, cycle number 5 was incorrectly skipped

in real time and added back in delayed mode:

CYCLE_NUMBER 1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12,…

CYCLE_NUMBER_INDEX 1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12,…

CYCLE_NUMBER_ADJUSTED 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, _, _

CYCLE_NUMBER_ADJUSTED_INDEX 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, _, _

Missing cycles

A cycle is defined as a series of actions, including collection of data, made by a float that ends with

transmission of data, or the attempt to transmit data. If the float fails to collect or transmit data, a cycle

has not occurred and can be defined as missing.

Missing cycles should NOT be stored in the TRAJ file. No place holders are necessary and will

not work with the new TRAJ file.

1.2.4 Clock offset

Some Argo float versions provide times for dated events or dated measurements. Over time, the float's

clock may drift. Clock drift can be defined as the drift of the clock in hours/ minutes/ seconds per year.

To correct for this, we must apply a clock offset where clock offset is defined as a measurement, done

at a given time, of the offset of the clock due to clock drift. Thus a clock offset should be estimated for

each of these float times.

Note that clock offset can also embrace a clock that has not been correctly set or a clock that has been

set in local time. Of course, in these cases, clock offset is not only revealing a drift of the float clock...

Float clock offset is defined as: Float clock offset = Float time - UTC time.

A good estimate of the clock offset can be obtained when the float transmits its Real Time Clock

(RTC) time in the technical data. It can then be compared to the time from Argos of the corresponding

message to compute a clock offset for all the float times of the concerned cycle.

Unfortunately this is not always the case, some floats do not transmit their RTC time and even if they

do, this RTC time is not always received.

Here are some remarks on RTC time transmitted by Argo float versions:

 For APEX Argos floats: the float times come from float versions which send the RTC time

only once in the test message (thus around the launch time),

 For APEX Iridium floats: the float times are given with the RTC time for every cycle, thus

they can always be corrected,

12

Argo data management Argo DAC Cookbook

 For PROVOR and ARVOR Argos floats: the RTC time is in the technical message. If we do

not receive the technical message, the float times cannot be computed for this cycle. Thus,

when we cannot compute the clock offset, there are no float times to correct from clock offset,

 For PROVOR Iridium floats: the RTC is set each cycle (using GPS time). Thus clock offset is

considered to be equal to zero,

 For NINJA Argos floats: the RTC time is provided each cycle but the corresponding message

can be missing (not received),

 For SIO and WHOI SOLO floats: no float time is transmitted, but the SIO float clock is reset

each time, making clock offset essentially non-existent.

 For SOLO-II: float time is transmitted. In addition the float clock is reset each surfacing,

making clock offset essentially non-existent.

 For NEMO Argos floats: the decoding has been done by Optimare and we do not know how

they manage clock offsets.

 For NEMO Iridium floats: the RTC time is in the technical message. If we receive the

technical message, we can correct RTC time by using GPS time.

1.2.4.1 How to put clock offset into trajectory file in real time

If a float can be corrected for clock offset in real time, DACs should determine the drift and adjust the

time (inclusive of adjustment of zero). The corrected time should go in the JULD_ADJUSTED

(N_MEASUREMENT) variable.

The JULD_ADJUSTED_STATUS should be set to "3" if the clock offset is computed from the RTC

time.

The JULD_ADJUSTED_QC should also be filled.

Simultaneously, the DATA_MODE should be marked as "A" indicating an adjusted float, and the

CLOCK_OFFSET (N_CYCLE) variable should be appropriately filled.

If a float cannot be corrected for clock offset in real time, the JULD_ADJUSTED* variables and the

CLOCK_OFFSET variable should all be fill value.

1.2.4.2 How to put clock offset in trajectory file in delayed mode

If the float is corrected for clock offset in delayed mode, the corrected time should go in the

JULD_ADJUSTED (N_MEASUREMENT) variable.

The JULD_ADJUSTED_STATUS should be set to "3" if the clock offset is computed from the RTC

time or to "1" if it is estimated using information sent by the float or if it is estimated using procedures

that rely on typical float behavior.

The JULD_ADJUSTED_QC should also be filled.

The clock offset itself goes in the CLOCK_OFFSET(N_CYCLE) variable and the DATA_MODE

should be marked as "D" indicating a delayed mode correction.

If a float cannot be corrected for clock offset in delayed mode, the CLOCK_OFFSET variable should

be fill value. The JULD_ADJUSTED* variables may be filled if other estimates are done on the

timing information not related to clock offset.

13

Argo data management Argo DAC Cookbook

2 Profile files

2.1 How to reduce high resolution profiles for TESAC distribution on the
GTS

Due to the limitation of TESAC bulletins to 15,000 bytes, the number of profile levels that can be sent

is limited to 790. As a reminder, only the standard Argo profile has to be sent on the GTS.

If the standard Argo profile length exceeds 790 then perform the following three steps:

1. Keep the first part of the profile up to 300 m at full resolution as long as the resolution is not

finer than the 1 dbar limit allowed in TESAC. If it is finer than 1 dbar, it needs to be sub-

sampled down to approximately 1 dbar. The way to do this is to keep the pressure level closest

to the integer value. This means there is no need for interpolation which can pose problems if

some salinity or temperature values are bad.

For example: If pressure = [4.5, 4.8, 5.1], 5.1 would be kept.

2. Identify a sub-sampling scheme for the deep profile in the following way:

a. Estimate profile length by retaining every N-th point (start with N=2, keep last point

of profile).

For example: a profile goes from 2 to 2000 dbar with 2 dbar increments (1000 levels).

Keeping the first 300 dbar in full resolution and skipping every second level below

results in 575 levels with a max pressure = 1998. To avoid losing the observations at

2000 dbar the last index has to be changed from 999 to 1000. This results in the

pressure variable = [2, 4, ... 300, 302, 306 ... 1990, 1994, 2000]

b. Check the profile length, if it is still too long go back to (a) and increase N by 1.

Otherwise go to (3).

3. The first time the profile length does not exceed the maximum permitted length of 790, the

sampling scheme has been identified and the GTS TESAC bulletin can be generated.

2.2 Profile time and location

2.2.1 Profile time

The date of an ascending profile (JULD variable) should be set (in order of priority):

1. To the Ascent End Time (AET) of the current cycle,

2. To the Transmission Start Time (TST) of the current cycle,

3. To the First Message Time (FMT) of the current cycle.

The date of a descending profile (JULD variable) should be set (in order of priority):

1. To the JULD of descending profile (DST of current cycle) if the float reports this,

2. To the Transmission End Time (TET) of the previous cycle,

3. To the Last Message Time (LMT) of the previous cycle,

4. otherwise:
a. If the previous cycle is missing: Use (DST or TET or LMT of the current cycle) -

CYCLE_TIME

b. If the current cycle is the first cycle, use:

14

Argo data management Argo DAC Cookbook

i. The LMT of the previous surface drift prior to the first dive, if any,

ii. Otherwise, the launch time of the float.

See Annex G to find how to compute AET, TST, FMT, DST, TET and LMT times for each float type

and version.

2.2.2 Profile Location

The location and location time (LATITUDE, LONGITUDE and JULD_LOCATION variables)

determination depend on the float positioning system.

For Argos floats

The location and location time of an ascending profile should be set to the first Argos fix of the current

cycle surface trajectory that succeeds the real time qc test #20 "Questionable Argos position test" (see

Annex I)

The location and location time of a descending profile should be set to the last Argos fix of the

previous cycle surface trajectory that succeeds the real time qc test #20 "Questionable Argos position

test" (see Annex I)

If the previous cycle is missing, interpolation can be done in near-real-time or in delayed mode. It is

set to fill value in real time. How many cycles with interpolated positions may exist between 2 cycles

with a position?

If the current cycle is the first deep cycle: use the surface drift trajectory done by the float prior to its

first dive, if any; otherwise use the float launch time and position.

For Iridium floats with available GPS fixes

The location and location time of an ascending profile should be set to the first GPS fix of the current

cycle surface trajectory.

The location and location time of a descending profile should be set to the last GPS fix of the previous

cycle surface trajectory.

If the previous cycle is missing, interpolation can be done in near-real-time or in delayed mode. It is

set to fill value in real time. How many cycles with interpolated positions may exist between 2 cycles

with a position?

If the current cycle is the first cycle: use the surface drift trajectory done by the float prior to its first

dive, if any; otherwise use the float launch time and position. Typically, Iridium floats do not have a

record of positions prior to the first dive.

For Iridium floats when no GPS fix is available

When no GPS fix is available, a weighted average of all Iridium fixes should be used. If the CEPradius

is more than 5km, a POSITION_QC flag of 2 should be assigned (see Annex H).

If a float has no positions or times at all for a surface interval, then an interpolated position with a

POSITION_QC flag of 8 is appropriate. This can happen often for ice floats or other floats that are

unsuccessful at reaching a satellite while on the surface.

15

Argo data management Argo DAC Cookbook

2.3 Processing Argo OXYGEN data at the DAC level

See "Oxygen Management for Argo floats" document on ADMT website

(http://www.argodatamgt.org/content/download/16300/106561/file/ARGO_oxygen_proposition_v1p3.

pdf).

3 Trajectory files

3.1 Surface fixes

3.1.1 Launch position and time

The launch position and time values should be duplicated from the META file to the TRAJ file.

They should be stored as the first LATITUDE, LONGITUDE and JULD of the N_MEASUREMENT

array with:

 CYCLE_NUMBER = -1,

 POSITION_QC = 0,

 POSITION_ACCURACY = _FILLValue,

 MEASUREMENT_CODE = 0

 JULD_STATUS = 4 - determined by satellite.

The launch time should be as reliable as possible (because it is used in Argos surface location

selection, see §3.1.3). Therefore, methods, based on transmitted information, can be used to check the

launch time. Once the launch position has been checked, its QC should be set to 1.

3.1.2 For Argos APEX floats

Argos Apex floats send the information "Time from startup" in the test message. This information can

be used to compute the startup time (not START_DATE) of the float (using the time of the Argos

message used for "Time from startup" information decoding).

The "Time from startup" time should always result in a time that is before the launch time as it is the

time the float was powered on.

Do we need this "Time from startup" stored? This section needs to be updated/enhanced by someone

who knows about APEX floats. Start time and startup time need to be clarified.

3.1.3 Argos surface locations

All Argos surface locations provided by CLS and occurring after the launch time should be stored in

the TRAJ file.

The concerned data:

 Location time,

 Location latitude and longitude,

 Location class (POSITION_ACCURACY),

 Satellite name,

 Error ellipse parameters (when/if available).

should be stored with their full resolution (some DACs don't store the seconds of the location time).

http://www.argodatamgt.org/content/download/16300/106561/file/ARGO_oxygen_proposition_v1p3.pdf
http://www.argodatamgt.org/content/download/16300/106561/file/ARGO_oxygen_proposition_v1p3.pdf

16

Argo data management Argo DAC Cookbook

However, the DACs should filter the received locations so that only one surface location is preserved

for a given time and a given satellite pass. Criteria to be used are:

1. The one with the better location class,
2. The one with the better error ellipses characteristics (to be defined),

3. The one computed from the longest satellite pass,

4. The one from the more recent download from CLS,

5. The one that succeeds to the test #20 "Questionable Argos position test" described in the

Argo quality control manual

(http://www.argodatamgt.org/content/download/341/2650/file/argo-quality-control-

manual-V2.7.pdf) and detailed in Annex I.

NOTE: Some Argos locations can be computed twice by CLS in (near) real time and the improved

results sent again. The Argos location data set of a given cycle should be updated from all CLS
incoming data at least 2 days after the theoretical end of the Argos transmission (cf. ADMT12

action#53).

The real time quality control test #20 (Questionable Argos Position test, also in Annex I) should be

used on surface Argos locations to define the position QCs.

3.1.4 Iridium/GPS surface locations

For Iridium floats, it is best to use the GPS position and time as the position fixes (LATITUDE and

LONGITUDE) and JULD_LOCATION when available. When a GPS fix is not available, no position

or time should be included in the trajectory file.

All the GPS positions should be stored in the TRAJ file.

For APEX floats

GPS locations provided in log file and message files should be merged. One suggested way to find the

fixes for APEX 001087 floats, is to parse the log file using:

GPS_FIX = ['GpsServices() Profile ' sprintf('%d', a_cycleNum) ' GPS fix obtained in'];

For PROVOR floats

The time of the GPS position provided in the technical message is the float's time and date (also

provided in this technical message).

http://www.argodatamgt.org/content/download/341/2650/file/argo-quality-control-manual-V2.7.pdf
http://www.argodatamgt.org/content/download/341/2650/file/argo-quality-control-manual-V2.7.pdf

17

Argo data management Argo DAC Cookbook

3.2 How to calculate cycle timing variables

Each Argo float cycle is composed of programmed events. Depending on float type, some of these

events can be dated and associated CTD measurements can be provided. The following figure shows

an example cycle, with the times ordered for Argos satellite communications. For Iridium floats, the

order of surface events may be different.

The sixteen following timed events can be highlighted.

Floats that profile on ascent would have the following mandatory cycle timings:

DST, DET, PET, DDET, AST, AET and all surface times

Floats that profile on descent might have the following cycle timings:

DST, DDET, DAST, DET, PET, AST, AET, and all surface times

FMT LMT

Profile

pressure

Parking

pressure

Surface

Cycle N

DST DET DDET

AST

AET

TST

FLT

LLT

TET

Depth

Cycle N-1

Argos/GPS locations

FST PST

DPST

PET

Dashed lines refer to
some floats that
profile on descent

DAST DDET

DPST

AST

Figure 1: Figure showing float cycle and the cycle timing variables. Floats can profile either on
descent or ascent. Most floats profile on ascent. Their path is shown with a solid black line.
Some floats profile on descent. One such float, the new SOLO-II Deep float, has a cycle as shown
by the dashed line.

18

Argo data management Argo DAC Cookbook

Time Long name Traj data name Description
DST Descent Start Time JULD_DESCENT_START

JULD_DESCENT_START_STATUS
Time when float leaves the surface,
beginning descent.

FST First Stabilization Time JULD_FIRST_STABILIZATION
JULD_FIRST_STABILIZATION_STATUS

Time when a float first becomes water-
neutral.

DET Descent End Time

JULD_DESCENT_END
JULD_DESCENT_END_STATUS

Note: Float may approach drift pressure
from above or below.

Time when float first approaches within
3% of the eventual drift pressure. Float
may be transitioning from the surface or
from a deep profile. This variable is based
on pressure only and can be measured or
estimated by fall-rate. In the case of a
float that overshoots the drift pressure on
descent, DET is the time of the overshoot.

PST Park Start Time JULD_PARK_START
JULD_PARK_START_STATUS

Time when float transitions to its Park or
Drift mission. This variable is based on
float logic based on a descent timer (i.e.
SOLO), or be based on measurements of
pressure (i.e. Provor).

Note on DET and PST: DET and PST might be near in time or hours apart depending on float model and cycle-to-cycle
variability. PI has judgment call whether DET~=PST.

PET Park End Time JULD_PARK_END
JULD_PARK_END_STATUS

Time when float exits from its Park or Drift
mission. It may next rise to the surface
(AST) or sink to profile depth (DDET)

DDET Deep Descent End Time JULD_DEEP_DESCENT_END
JULD_DEEP_DESCENT_END_STATUS

Time when float first approaches within
3% of the eventual deep drift/profile
pressure. This variable is based on
pressure only and can be measured or
estimated by fall-rate.

DPST Deep Park Start Time JULD_DEEP_PARK_START
JULD_DEEP_PARK_START_STATUS

Time when float transitions to a deep park
drift mission. This variable is only defined
if the float enters a deep drift phase (i.e.
DPST not defined in cases of constant
deep pressure due to bottom hits, or
buoyancy issues)

DAST Deep Ascent Start Time JULD_DEEP_ASCENT_START
JULD_DEEP_ASCENT_START_STATUS

Time when float begins its rise to drift
pressure. Typical for profile-on-descent
floats.

AST Ascent Start Time JULD_ASCENT_START
JULD_ASCENT_START_STATUS

Time when float begins to return to the
surface.

AET Ascent End Time JULD_ASCENT_END
JULD_ASCENT_END_STATUS

Time when float reaches the surface.

TST Transmission Start Time JULD_TRANSMISSION_START
JULD_TRANSMISSION_START_STATUS

Time when float begins transmitting.

FMT First Message Time JULD_FIRST_MESSAGE
JULD_FIRST_MESSAGE_STATUS

Earliest time of all received float
messages.

FLT First Location Time JULD_FIRST_LOCATION
JULD_FIRST_LOCATION_STATUS

Earliest location of all float locations.

LLT Last Location Time JULD_LAST_LOCATION
JULD_LAST_LOCATION_STATUS

Latest location of all float locations.

LMT Last Message Time JULD_LAST_MESSAGE
JULD_LAST_MESSAGE_STATUS

Latest time of all received float messages.

TET Transmission End Time JULD_TRANSMISSION_END
JULD_TRANSMISSION_END_STATUS

Time when floats stops transmitting.

Table 1: Descriptions of cycle times shown in the previous figure

All these times are in both the N_MEASUREMENT and the N_CYCLE variable groups of the

TRAJ file. These times should be included in chronological order in both the cases. This means

events may not occur in the same order as in the table above, as it is developed around an Argos

float.

The main times of a cycle can be separated in two parts:

 Positioning and transmission system times: FMT, FLT, LLT and LMT,

 Times of float events: the other ones.

19

Argo data management Argo DAC Cookbook

3.2.1 Positioning system and transmission system times

The FMT, FLT, LLT and LMT times only depend on the positioning system and the transmission

system used by the float. Additionally, the order these times and positions occur in chronologically

depends on the system being used. The order is completely different for Argos than for Iridium and in

some cases of Iridium usage, there is only a single position and time fix during the entire surfacing

period. So, in that situation, all the times will be the same.

3.2.1.1 For Argos floats

See Annex A for Argos message time and Argos location time illustration as received from CLS.

Status variables should be a "4 (value is determined by satellite)".

3.2.1.1.1 First and last message times

All Argos message times should be collected and the maximum and minimum values stored as FMT
and LMT (we cannot assume that data are received from CLS in chronological order).

If only one message has been received for a given cycle, its time should be duplicated in FMT and

LMT.

NOTE: Some DACs already store FMT and LMT in the TRAJ file but some of them are erroneous

because they correspond to ghost Argos messages.

As reliable FMTs and LMTs are crucial for other times estimation (such as APEX DST), we must

think of a robust method to reject these ghost messages in real time.

The best method for now is for floats which use a CRC in their Argos messages, to use in FMT and
LMT only Argos messages that passed the CRC check. From AOML: [For known cycle times one can

use that information plus an analysis of all cycles in the raw data to identify ghosts. We developed a

program for this, but are not yet using it in operations. We could share that program with others once

we are convinced it works.]

3.2.1.1.2 First and last location times

All Argos location times should be collected and the maximum and minimum values stored as FLT
and LLT (we cannot assume that data are received from CLS in chronological order).

If only one location has been computed for a given cycle, its time should be duplicated in FLT and

LLT.

3.2.1.2 For Iridium floats

Even if Iridium floats stay less time at the surface and generally transmit only one GPS location, it is

worth storing this one time as FMT, FLT, LLT and LMT for data set homogeneity. Additionally, the

chronological order of the events on the surface does not necessarily follow the numerical order from

the measurement code table which was designed more with the Argos system in mind. For example,

the GPS fix comes first and then the first message is received. It is important to store the times in

chronological rather than numbered order from the measurement code table.

3.2.1.2.1 First and last message times

For NEMO, PROVOR, SOLO floats

Use the "Time of Session" information, provided in all the Iridium e-mails received for each cycle, as

the float message time.

20

Argo data management Argo DAC Cookbook

For NAVIS floats

For Iridium, there are two values transmitted that replace the Argos transmission times. When the float

reaches the surface, it acquires a GPS position. The time to do this is represented by TTFF (in

seconds). After the GPS is acquired, then the Iridium transceiver is activated. The SBDT is the

transmission time of the first Iridium packet (housekeeping packet). This is to give an indication of the

transmission throughput as the housekeeping is a constant size as opposed to the other packets. After

completion of the transmission, a satellite check is done to look for incoming commands. If there is

one, it is processed and then the float starts its next profile. Note that SBDT refers to the previous

profile, not the current one, as it is calculated AFTER the Iridium transmission takes place.

First Message Time is TST + TTFF.

Last Message Time is the same as LLT.

For NOVA floats

For Iridium, there are two values transmitted that replace the Argos transmission times. When the float

reaches the surface, it acquires a GPS position. The time to do this is represented by TTFF (in

seconds). After the GPS is acquired, then the Iridium transceiver is activated. The SBDT is the

transmission time of the first Iridium packet (housekeeping packet). This is to give an indication of the

transmission throughput as the housekeeping is a constant size as opposed to the other packets. After

completion of the transmission, a satellite check is done to look for incoming commands. If there is

one, it is processed and then the float starts its next profile. Note that SBDT refers to the previous

profile, not the current one, as it is calculated AFTER the Iridium transmission takes place.

First Message Time is TST + TTFF.

Last Message Time is the same as the FMT - there is only one GPS fix.

3.2.1.2.2 First and last location times

For APEX floats

Use GPS location?

For PROVOR floats

There is only one GPS location (provided in the technical message), thus FLT = LLT = GPS location

time (considered to be equal to float time as provided in the technical message).

For NAVIS floats

First Location Time is the same as FMT.

Last Location Time is the time of last GPS fix. DLF is day of last GPS fix. TLF is hour of last GPS

fix.

For NOVA floats

First Location Time is the same as FMT.

Last Location Time is the same as FMT - there is only one GPS fix. DLF is day of last GPS fix. TLF

is hour of last GPS fix.

21

Argo data management Argo DAC Cookbook

3.2.2 Times of float events

Each float type, and sometimes each model of float type, has different instructions on how to fill in the

timing variables in the trajectory file. Remember that all mandatory cycle timing variables must be

filled and are in both the N_MEASUREMENT and N_CYCLE arrays. If it is not possible to fill this

time, even by an estimation, fill value must be used in both arrays.

3.2.2.1 APEX floats

The cycle timing information transmitted by Argos APEX floats is limited, so no event times are

directly available. Floats equipped with APF9a controller boards have begun to address the lack of

transmitted cycle timing by transmitting the internal clock time when the float reaches the end of its

down time and the offset from this time when the float begins its ascent (thus end of DOWN TIME

period, AST, AET and TST). These times should be stored in the TRAJ file but should not replace the

existing ones (more homogeneously obtained by algorithms common to all APEX versions). APEX

Iridium floats send more timing information.

Thus, to compute or estimate these times for Argos floats, we must use "external" methods based on

the float functioning.

Two main methods have proved (from work done for ANDRO) to be efficient and robust enough to be

implemented in real time.

 The first one, based on float functioning, can be used to estimate TET,

 The second one, based on float transmission strategy, can be used to compute TST.

Other event times can be (roughly for some of them) estimated from TET or TST and float parameters

and/or in situ data statistical results.

This is the case for:

 DST, DET and PET which are determined from TET,

 AET and AST which are determined from TST.

If float clock offset has been estimated and applied, make sure to fill in the CLOCK_OFFSET-

(N_CYCLE) variable and the JULD_ADJUSTED variables so users know it has been applied.

3.2.2.1.1 Transmission End Time determination - APEX

3.2.2.1.1.1 Argos APEX floats

The TET can be estimated with the method proposed in §5.3. In this Annex B, two methods are

proposed for finding TET depending on whether or not clock offset has been estimated. In general,

DACs should take the following steps:

 Correct clock drift at launch for clocks which have not been correctly set,

 Estimate TET using the first algorithm (without clock drift estimation) for the first 32 cycles,

 From cycle #33, estimate the clock drift:

o If it is less than 20 minutes per year, estimate TET using the second algorithm (with

clock drift estimation) for all float cycles,

o If it is greater than 20 minutes per year, there was an unexpected behavior of the float

and the TET should not be estimated.

For more details, refer to Annex B.

Regardless of whether clock offset has been estimated during the TET determination, the resulting

values should be stored in the JULD_ADJUSTED variable in the N_MEASUREMENT array with the

22

Argo data management Argo DAC Cookbook

measurement code set to 800 and STATUS set to 1: value is estimated using information not

transmitted by the float or by procedures that rely on typical float behavior

N_CYCLE arrays: TET value should be stored in the JULD_TRANSMISSION_END variable and the

JULD_TRANSMISSION_END_STATUS set to 1.

If float clock offset has been estimated and applied, make sure to fill in the CLOCK_OFFSET

(N_CYCLE) variable so users know it has been applied.

3.2.2.1.1.2 Iridium APEX floats

The TET of the cycle #N is provided as the start date of the cycle #N+1.

The start date of the cycle #N+1 is retrieved from log file as the date of the event:

DescentInit() Deep profile N+1 initiated at mission-time XXXXXsec.

or
DescentInit() Park profile N+1 initiated at mission-time XXXXXsec.

depending if cycle #N+1 is a deep profile or not.

The TET value should be stored in the JULD variables in the N_MEASUREMENT arrays with an

MC=800. The JULD_STATUS variable should be a 2 - value is transmitted by the float. Float clock

offset corrections can also be applied.

For the N_CYCLE array, the TET value should be stored in the JULD_TRANSMISSION_END

variable and the JULD_TRANSMISSION_END_STATUS set to 2. If float clock offset has been

estimated and applied, make sure to fill in the CLOCK_OFFSET (N_CYCLE) variable so users know

it has been applied.

3.2.2.1.2 Descent Start Time determination - APEX

DST must be defined from TET. Based on knowledge of Iridium APEX floats, it appears that DST =

TET. Assuming that Iridium and Argos APEX floats act similarly, set DST = TET for all APEX floats.

3.2.2.1.3 Descent End Time determination - APEX

APEX floats do not measure or estimate pressure on their descent, so the time when the float first

approaches within 3% of the eventual drift pressure cannot be calculated. If the float overshoots the

drift pressure on descent, DET is the time of the overshoot. This time can be entered into the JULD

variables in the N_MEASUREMENT array with an MC=200 and a STATUS equal to 2: value is

transmitted by the float.

3.2.2.1.4 Park Start Time determination – APEX

3.2.2.1.4.1 Non APF9 APEX floats

For non APF9 APEX floats, the PST can be roughly estimated using the DST and the duration of the

descent to PARKING depth.

The mean descent rate to use depends on the PARKING depth, the recommended values are provided

in the following table (see also §7.1).

PARKING depth 250 dbar 500 dbar 1000 dbar 1500 dbar 2000 dbar

Mean descent rate (cm.s
-1

) 2.6 3.6 5.9 12.4 9.0

Table 2: Recommended descent rates

23

Argo data management Argo DAC Cookbook

Thus for cycle #i:

PST(i) = DST(i) + (PARKING_PRESSURE(i) * 100 * 36)/(mean descent rate * 864)

where PARKING_PRESSURE(i) is the theoretical PARKING_PRESSURE of cycle #i.

The PST value (MC=250) should be stored in the N_MEASUREMENT arrays only in the

JULD_ADJUSTED variable since the time is estimated based on float behavior. The STATUS should

be set to 1: value is estimated using information not transmitted by the float or by procedures that rely

on typical float behaviour. Float clock offset corrections can also be applied.

The JULD variables should be fill value.

The PST value should be stored in the JULD_PARK_START variable and the

JULD_PARK_START_STATUS set to 1 (estimated using procedures that rely on typical float

behavior).

If float clock offset has been estimated and applied, make sure to fill in the CLOCK_OFFSET

(N_CYCLE) variable so users know it has been applied.

3.2.2.1.4.2 APF9 APEX floats

For APF9 APEX Argos floats, the PST should be found in the same manner as the "Non APF9 APEX

floats". See 3.2.2.1.4.1

For APF9i APEX (Iridium) floats, the PST is transmitted in the log file (maximum log file size and

verbosity setting permitting). An example from an APF9i log file is:

(Jun 13 2012 03:19:26, 18004 sec) ParkInit()

The PST value should also be stored in the JULD variables in the N_MEASUREMENT arrays with an

MC=250. The _JULD_STATUS variable should be a 2 - value is transmitted by the float. Float clock

offset corrections can also be applied.

For the N_CYCLE array, the PST value should be stored in the JULD_PARK_START variable and

the JULD_PARK_START_STATUS set to 2. If float clock offset has been estimated and applied,

make sure to fill in the CLOCK_OFFSET (N_CYCLE) variable so users know it has been applied.

If it is not in the log file, then the same approach as for APF9a floats can be used.

3.2.2.1.5 Park End Time determination - APEX

3.2.2.1.5.1 Argos APEX floats

For Argos APEX floats, PET can be computed from TET.

We must check first that, for the corresponding cycle, the theoretical PARKING and PROFILE depths

differ (be careful with PnP floats, see §5.1).

If not, there is no PET, do not include it in the N_MEASUREMENT array and put fill value in the

N_CYCLE array JULD_PARK_END and JULD_PARK_END_STATUS variables.

Otherwise PET = TET - UP_TIME - DPDP hours.

Where DPDP is the value of the Deep Profile Descent Period, a programmed meta-data parameter that

determines the maximum amount of time given to the float for diving from PARKING to PROFILE

depth. In older floats without this metadata, DPDP is 6 hours.

24

Argo data management Argo DAC Cookbook

If the float clock offset has been estimated during the TET determination, the CLOCK_OFFSET

(N_CYCLE) variable should also be filled. Place PET in the JULD_ADJUSTED

(N_MEASUREMENT) variables with MC=300 and a STATUS of 1: value is estimated using

information not transmitted by the float or by procedures that rely on typical float behaviour.

For the N_CYCLE array, PET value should be stored in the JULD_PARK_END variable and the

JULD_PARK_END_STATUS set to. If float clock offset has been estimated and applied, make sure

to fill in the CLOCK_OFFSET (N_CYCLE) variable so users know it has been applied.

3.2.2.1.5.2 Iridium APEX floats

For Iridium APEX floats (APF9i), this time is transmitted in log files (log file size limit and verbosity

setting permitting). For example: (Jun 13 2012 03:25:30, 18369 sec) GoDeepInit()

If the float clock offset has been estimated, this should also be included in the PET and

JULD_ADJUSTED variables should be filled. Use MC=300 and a STATUS of 2: value is transmitted

by the float. If not clock offset has been estimated, use the JULD variables.

For the N_CYCLE array, PET value should be stored in the JULD_PARK_END variable and the

JULD_PARK_END_STATUS set to 2. If float clock offset has been estimated and applied, make sure

to fill in the CLOCK_OFFSET (N_CYCLE) variable so users know it has been applied.

When this time is not transmitted, it will need to be estimated in a manner similar to Argos APEX

floats.

3.2.2.1.6 Deep Descent End Time determination - APEX

For Argos APEX floats, DDET could be estimated from PET and the mean descent velocity estimated

for DET determination.

However:

 Deep descent velocity is not necessarily the same as the mean velocity between the surface

and the PARKING depth,

 We have no in situ pressure measurements between PET and DDET from APEX floats,

 DDET is not as important as DET.

Consequently, DDET should not currently be required to be estimated for APEX Argos floats.

However, because DDET might be estimated at a later date, fill value should go in the

N_MEASUREMENT array with an MC = 400 and STATUS code of 9: value is not immediately

known, but believe it can be estimated later

For the N_CYCLE array, JULD_DEEP_DESCENT_END = fill value as does

JULD_DEEP_DESCENT_END_STATUS.

For Iridium APEX floats (APF9i), this time might be in the log files, log file size and verbosity setting

permitting. If the float has reached the deep descent time out then it will be the same as AET to within

a few seconds.

If the time is in the log files, fill in the JULD (or JULD_ADJUSTED if clock offset has been applied)

variables in the N_MEASUREMENT array with an MC = 400 and a STATUS code of 2: value is

transmitted by the float.

25

Argo data management Argo DAC Cookbook

3.2.2.1.7 Ascent Start Time determination - APEX

3.2.2.1.7.1 Argos APEX floats that do not provide this time

If the PARKING and PROFILE depths are equal for cycle #i, then:

(1) : AST(i) = TET(i) - UP TIME

If not, we can however roughly estimate AST using AET and the profile duration.

(2) : AST(i) = AET(i) - duration of profile #i

The duration of profile #i can be estimated with the profile deepest pressure (ProfMaxPres(i)) and a

mean ascent rate.

ProfMaxPres(i)) is the maximum pressure of the profile if the Argos message of the first profile

measurement has been received (otherwise, AST(i) should not be estimated).

The mean Ascent rate to use can be 9.5 cm/s (see §7.2).

Thus AST(i) = AET(i) - (PARKING_ ProfMaxPres (i) * 100 * 36)/(9.5 * 864)

We can also verify that AST(i) is in the interval

[TET(i) - UP TIME - DPDP hours; TET(i) - UP TIME].

Note that AST estimated in (1) is much more reliable than AST estimated in (2), associated JULD_QC

should reflect it.

The AST value should also be stored in the JULD_ADJUSTED variables with an MC = 500 and

STATUS set to 1: value is estimated using information not transmitted by the float or by procedures

that rely on typical float behaviour. Apply clock offset if it has been determined.

For the N_CYCLE array, the AST value should be stored in the JULD_ASCENT_START variable

and the JULD_ASCENT_START_STATUS set to 1. If float clock offset has been estimated and

applied, make sure to fill in the CLOCK_OFFSET (N_CYCLE) variable so users know it has been

applied.

3.2.2.1.7.2 Ascent Start Time provided by APEX floats

Some float versions (see Annex G) directly provide the time at the end of DOWN TIME period

(DTETFL).

These float versions also provide, in the Auxiliary Engineering Data (AED), the "Time of profile

initiation". This information is defined as the time difference, in minutes, between profile start and end

of DOWN TIME (negative for start before expiration and positive for start after expiration, thus in this

latter case, necessarily when TOD feature has been set).

The AED are not always transmitted (depending on the remaining space in the last Argos message) but

if received, this "Time of profile initiation" (TPI) can be used to compute a second value of AST

provided by the float (ASTFL).

ASTFL = DTETFL + TPI minutes

ASTFL value computed from DTETFL (corrected from clock offset) does not need to be corrected from

clock offset but the information should be set in the ASTFL storage.

26

Argo data management Argo DAC Cookbook

ASTFL is stored in the JULD_ADJUSTED N_MEASUREMENT arrays with the MC = 502 and the

STATUS equal to 3: value is computed from information transmitted by the float. Clock offset has

been applied in the DTETFL variable.

3.2.2.1.7.3 Ascent Start Time for Iridium APEX floats

For APF9i floats the AST is in the log file if the log file size limit has not been reached and the
verbosity configuration parameter permits. The AST of cycle #N is retrieved from the log file as the

date of the event:

ProfileInit() PrfId:N Pressure:XXX.Xdbar pTable[YY]:ZZZdbar

The corresponding pressure (XXX.Xdbar) is associated to AST.

If the time is in the log files, fill in the JULD (or JULD_ADJUSTED if clock offset has been applied)

variables in the N_MEASUREMENT array with an MC = 500 and a STATUS code of 2: value is

transmitted by the float.

For the N_CYCLE array, fill in JULD_ASCENT_START and set

JULD_ASCENT_START_STATUS to 2.

When this time is not transmitted, then the known time of day configuration parameter and down time
can be used to estimate the AST. More detailed information requested.

When the time is estimated, the AST value should also be stored in the JULD_ADJUSTED variables

in the N_MEASUREMENT arrays with an MC = 500 and STATUS set to 1: value is estimated using

information not transmitted by the float or by procedures that rely on typical float behaviour.

For the N_CYCLE array, the AST value should be stored in the JULD_ASCENT_START variable

and the JULD_ASCENT_START_STATUS set to 1. If float clock offset has been estimated and

applied, make sure to fill in the CLOCK_OFFSET (N_CYCLE) variable so users know it has been

applied.

3.2.2.1.8 Ascent End Time determination - APEX

3.2.2.1.8.1 Argos APEX floats

AET can be computed from TST (not from TSTFL): AET = TST - 10 minutes

AET can be stored in the JULD (or JULD_ADJUSTED if clock offset has been applied) variables in

the N_MEASUREMENT array with an MC = 600 and STATUS set to 3: value is directly computed

from relevant, transmitted information.

For the N_CYCLE array, the result value should be stored in the JULD_ASCENT_END variable and

the JULD_ASCENT_END set to 3. If the float clock offset has been estimated and applied, make sure

to fill in the CLOCK_OFFSET (N_CYCLE) variable so users know it has been applied.

The delay of 10 minutes between AET and TST needs to be confirmed by the manufacturer.

3.2.2.1.8.2 Iridium APEX floats

The AET is retrieved from log file as the date of the event:

SurfaceDetect() SurfacePressure:X.Xdbars Pressure:Y.Ydbars PistonPosition:ZZZ

associated with the concerned cycle.

27

Argo data management Argo DAC Cookbook

AET can be stored in the JULD (or JULD_ADJUSTED if clock offset has been applied) variables in

the N_MEASUREMENT array with an MC = 600 and STATUS set to 2: value is transmitted by the

float.

For the N_CYCLE array, the result value should be stored in the JULD_ASCENT_END variable and

the JULD_ASCENT_END set to 2. If the float clock offset has been estimated and applied, make sure

to fill in the CLOCK_OFFSET (N_CYCLE) variable so users know it has been applied.

3.2.2.1.9 Transmission Start Time determination - APEX

3.2.2.1.9.1 Argos APEX floats

The TST can be computed with the method proposed in §6.2.

The TST should be in the JULD (or JULD_ADJUSTED if clock offset has been applied) variables in

the N_MEASUREMENT array with an MC = 700 and STATUS set to 3: value is directly computed

from relevant, transmitted float information.

For the N_CYCLE array, the value should be stored in the JULD_TRANSMISSION_START variable

and the JULD_TRANSMISSION_START_STATUS set to 3. If the float clock offset has been

estimated and applied, make sure to fill in the CLOCK_OFFSET (N_CYCLE) variable so users know

it has been applied.

3.2.2.1.9.2 Transmission Start Time provided by APEX Argos floats

Some float versions (see Annex G) directly provide the time at the end of the DOWN TIME period

(DTETFL).

If the float clock offset has been estimated during the TET determination, DTETFL value should first

be corrected for clock offset and the information should also be set in the DTETFL storage.

DTETFL is included in the JULD (or JULD_ADJUSTED if clock offset has been applied) variables in

the N_MEASUREMENT array with an MC = 501 STATUS set to 2: value is transmitted by the float.

These float versions also provide the time, in minutes, of telemetry phase initiation relative to DTETFL

(TOTPI).

Thus a TST, provided by the float, can be computed: TSTFL = DTETFL + TOTPI minutes

TSTFL value computed from DTETFL (corrected for clock offset) does not need to be corrected for

clock offset but the information should be set in the TSTFL storage.

TSTFL is included in the JULD (or JULD_ADJUSTED if clock offset has been applied) variables in

the N_MEASUREMENT array with an MC = 701 and STATUS set to 3: value is directly computed

from relevant, transmitted float information.

3.2.2.1.9.3 Iridium APEX (APF9i) floats

The TST is transmitted in log files.

The TST is computed as the starting acquisition date of the GPS fix(es).

TST = min[GPS fix date – corresponding acquisition date]

For example, for cycle #138 of float #2900680, we can find in the log file:

GpsServices() Profile 138 GPS fix obtained in 57 seconds.

GpsServices() Fix: 83.617 1.534 03/08/2007 015610 7

GpsServices() Profile 138 GPS fix obtained in 38 seconds.

GpsServices() Fix: 83.612 1.536 03/08/2007 021500 5

GpsServices() Profile 138 GPS fix obtained in 38 seconds.

28

Argo data management Argo DAC Cookbook

GpsServices() Fix: 83.608 1.538 03/08/2007 023000 4

In the message file we can find:

GPS fix obtained in 57 seconds.

lon lat mm/dd/yyyy hhmmss nsat

Fix: 83.617 1.534 03/08/2007 015610 7

GPS fix obtained in 38 seconds.

lon lat mm/dd/yyyy hhmmss nsat

Fix: 83.612 1.536 03/08/2007 021500 5

GPS fix obtained in 38 seconds.

lon lat mm/dd/yyyy hhmmss nsat

Fix: 83.608 1.538 03/08/2007 023000 4

Both data sets should be merged first (they are not always identical), then we obtain:

TST = 03/08/2007 01:56:10 – 57 seconds = 03/08/2007 01:55:13 (UTC time)

TST should go in the JULD (or JULD_ADJUSTED if clock offset has been applied) variables in the

N_MEASUREMENT array with an MC = 700 and a STATUS code of 2: value is transmitted by the

float.

For the N_CYCLE array, fill in JULD_TRANSMISSION_START and set

JULD_TRANSMISSION_START_STATUS to 2.

The value should be stored in the JULD_TRANSMISSION_START variable and the

JULD_TRANSMISSION_START_STATUS set to 2. If float clock offset has been estimated and

applied, make sure to fill in the CLOCK_OFFSET (N_CYCLE) variable so users know it has been

applied.

N_MEASUREMENT array

ARGOS APEX floats
MC Float type JULD JULD_STATUS

800
TET

All ARGOS
APEX floats

Fill Value 9: value is not immediately known, but
believe it can be estimated later

JULD_ADJUSTED JULD_ADJUSTED_STATUS

Transmission End Time
(3.2.2.1.1.1)

1: value is estimated using information
not transmitted by the float or by
procedures that rely on typical float
behaviour

MC Float type JULD JULD_STATUS

100
DST

All ARGOS
APEX floats

Fill value 9: value is not immediately known, but
believe it can be estimated later

JULD_ADJUSTED JULD_ADJUSTED_STATUS

Descent Start Time
(0)

1: value is estimated using information
not transmitted by the float or by
procedures that rely on typical float
behaviour

MC Float type JULD JULD_STATUS

200
DET

All ARGOS
APEX floats

Descent End time without clock
offset applied (3.2.2.1.3)

2: value is transmitted by float

JULD_ADJUSTED JULD_ADJUSTED_STATUS

Descent End Time with clock
offset applied (3.2.2.1.3)

2: value is transmitted by float

MC Float type JULD JULD_STATUS

250
PST

Non APF9
ARGOS APEX
floats

Fill value 9: value is not immediately known, but
believe it can be estimated later

JULD_ADJUSTED JULD_ADJUSTED_STATUS

Park Start Time (3.2.2.1.4.1) 1: value is estimated using information
not transmitted by the float or by
procedures that rely on typical float
behaviour

MC Float type JULD JULD_STATUS

250
PST

APF9a ARGOS
APEX floats

Park Start Time without clock
offset applied (3.2.2.1.4.2)

3: value is directly computed from
relevant, transmitted float information

JULD_ADJUSTED JULD_ADJUSTED_STATUS

Park Start Time with clock 3: value is directly computed from

29

Argo data management Argo DAC Cookbook

offset applied (3.2.2.1.4.2) relevant, transmitted float information

MC Float type JULD JULD_STATUS

300
PET

All ARGOS
APEX floats

Fill Value (3.2.2.1.5.1) 9: value is not immediately known, but
believe it can be estimated later

JULD_ADJUSTED JULD_ADJUSTED_STATUS

Park End Time with or without
clock offset applied
(3.2.2.1.5.1)

1: value is estimated using information
not transmitted by the float or by
procedures that rely on typical float
behaviour

MC Float type JULD JULD_STATUS

400
DDET

All ARGOS
APEX floats

Fill Value (3.2.2.1.6) 9: value is not immediately known, but
believe it can be estimated later

JULD_ADJUSTED JULD_ADJUSTED_STATUS

Fill value (3.2.2.1.6) 9: value is not immediately known, but
believe it can be estimated later

MC Float type JULD JULD_STATUS

500
AST

All ARGOS
APEX floats

Fill Value (3.2.2.1.7.1) 9: value is not immediately known, but
believe it can be estimated later

JULD_ADJUSTED JULD_ADJUSTED_STATUS

Ascent Start Time with or
without clock offset applied
(3.2.2.1.7.1)

1: value is estimated using information
not transmitted by the float or by
procedures that rely on typical float
behaviour

MC Float type JULD JULD_STATUS

501
DTETFL

ARGOS APEX
floats that send
Down-time end
time

Down-time end time sent by
float without clock offset
applied (3.2.2.1.7.2)

2: value is transmitted by float

JULD_ADJUSTED JULD_ADJUSTED_STATUS

Down-time end time sent by
float with clock offset applied
(3.2.2.1.7.2)

2: value is transmitted by float

MC Float type JULD JULD_STATUS

502
ASTFL

ARGOS APEX
floats that send
Down-time end
time

Ascent Start time determined
from Down-time end time
without clock offset applied
(3.2.2.1.7.2)

3: value is directly computed from
relevant, transmitted float information

JULD_ADJUSTED JULD_ADJUSTED_STATUS

Ascent Start Time determined
from Down-time end time with
clock offset applied
(3.2.2.1.7.2)

3: value is directly computed from
relevant, transmitted float information

MC Float type JULD JULD_STATUS

600
AET

All ARGOS
APEX floats

Ascent End Time without clock
offset applied (3.2.2.1.8.1)

3: value is directly computed from
relevant, transmitted float information

JULD_ADJUSTED JULD_ADJUSTED_STATUS

Ascent End Time with clock
offset applied (3.2.2.1.8)

3: value is directly computed from
relevant, transmitted float information

MC Float type JULD JULD_STATUS

700
TST

All ARGOS
APEX floats

Transmission Start Time
without clock offset applied
(3.2.2.1.9.1)

3: value is directly computed from
relevant, transmitted float information

JULD_ADJUSTED JULD_ADJUSTED_STATUS

Transmission Start Time with
clock offset applied
(3.2.2.1.9.1)

3: value is directly computed from
relevant, transmitted float information

MC Float type JULD JULD_STATUS

701
TSTFL

ARGOS APEX
floats that send
Down-time end
time

Transmission Start Time based
on DETFL without clock offset
applied (3.2.2.1.9.2)

3: value is directly computed from
relevant, transmitted float information

JULD_ADJUSTED JULD_ADJUSTED_STATUS

Transmission Start Time based
on DETFL with clock offset
applied (3.2.2.1.9.2)

3: value is directly computed from
relevant, transmitted float information

30

Argo data management Argo DAC Cookbook

N_MEASUREMENT Array

Iridium APEX floats
MC Float type JULD JULD_STATUS

800
TET

All Iridium
APEX floats

Fill Value 9: value is not immediately known, but
believe it can be estimated later

JULD_ADJUSTED JULD_ADJUSTED_STATUS

Transmission End Time
(3.2.2.1.1.2)

2: value is transmitted by the float

MC Float type JULD JULD_STATUS

100
DST

All Iridium
APEX floats

Fill value 9: value is not immediately known, but
believe it can be estimated later

JULD_ADJUSTED JULD_ADJUSTED_STATUS

Descent Start Time estimated
using same method as for
ARGOS APEX floats (3.2.2.1.2)

1: value is estimated using information
not transmitted by the float or by
procedures that rely on typical float
behaviour

MC Float type JULD JULD_STATUS

200
DET

All Iridium
APEX floats

Descent End time without clock
offset applied (3.2.2.1.3)

2: value is transmitted by float

JULD_ADJUSTED JULD_ADJUSTED_STATUS

Descent End Time with clock
offset applied (3.2.2.1.3)

2: value is transmitted by float

MC Float type JULD JULD_STATUS

250
PST

APF9 Iridium
APEX floats

Park Start Time without clock
offset applied (3.2.2.1.4.2)

2: value is transmitted by float

JULD_ADJUSTED JULD_ADJUSTED_STATUS

Park Start Time with clock offset
applied (3.2.2.1.4.2)

2: value is transmitted by float

MC Float type JULD JULD_STATUS

300
PET

Iridium APEX
floats that sent
PET

Park End Time without clock
offset applied (3.2.2.1.5.2)

2: value is transmitted by float

JULD_ADJUSTED JULD_ADJUSTED_STATUS

Park End Time with clock offset
applied (3.2.2.1.5.2)

2: value is transmitted by float

MC Float type JULD JULD_STATUS

300
PET

Iridium APEX
floats that did
not send PET

Fill Value (3.2.2.1.5.1) 9: value is not immediately known, but
believe it can be estimated later

JULD_ADJUSTED JULD_ADJUSTED_STATUS

Park End Time estimated using
same method as ARGOS APEX
floats with or without clock
offset applied (3.2.2.1.5.1)

1: value is estimated using information
not transmitted by the float or by
procedures that rely on typical float
behaviour

MC Float type JULD JULD_STATUS

400
DDET

All Iridium
APEX floats

Deep Descent End Time
(3.2.2.1.6)

2: value is transmitted by float

JULD_ADJUSTED JULD_ADJUSTED_STATUS

Deep Descent End Time
(3.2.2.1.6)

2: value is transmitted by float

MC Float type JULD JULD_STATUS

500
AST

Iridium APEX
floats that sent
AST

Ascent Start Time without clock
offset applied (3.2.2.1.7.3)

2: value is transmitted by float

JULD_ADJUSTED JULD_ADJUSTED_STATUS

Ascent Start Time with clock
offset applied (3.2.2.1.7.3)

2: value is transmitted by float

MC Float type JULD JULD_STATUS

500
AST

Iridium APEX
floats that did
not send AST

Fill Value (3.2.2.1.7.2) 9: value is not immediately known, but
believe it can be estimated later

JULD_ADJUSTED JULD_ADJUSTED_STATUS

Ascent Start Time (3.2.2.1.7.3) 2: value is transmitted by float

MC Float type JULD JULD_STATUS

501
DETFL

Iridium APEX
floats that send
Down-time end
time

Down-time end time sent by
float without clock offset applied
(3.2.2.1.7.2)

2: value is transmitted by float

JULD_ADJUSTED JULD_ADJUSTED_STATUS

Down-time end time sent by
float with clock offset applied
(3.2.2.1.7.2)

2: value is transmitted by float

MC Float type JULD JULD_STATUS

502 Iridium APEX Ascent Start time determined 3: value is directly computed from

31

Argo data management Argo DAC Cookbook

ASTFL floats that send
Down-time end
time

from Down-time end time
without clock offset applied
(3.2.2.1.7.2)

relevant, transmitted float information

JULD_ADJUSTED JULD_ADJUSTED_STATUS

Ascent Start Time determined
from Down-time end time with
clock offset applied (3.2.2.1.7.2)

3: value is directly computed from
relevant, transmitted float information

MC Float type JULD JULD_STATUS

600
AET

All Iridium
APEX floats

Ascent End Time without clock
offset applied (3.2.2.1.8)

3: value is directly computed from
relevant, transmitted float information

JULD_ADJUSTED JULD_ADJUSTED_STATUS

Ascent End Time with clock
offset applied (3.2.2.1.8.2)

2: value is transmitted by float

MC Float type JULD JULD_STATUS

700
TST

All Iridium
APEX floats

Transmission Start Time without
clock offset applied (3.2.2.1.9.3)

2: value is transmitted by float

JULD_ADJUSTED JULD_ADJUSTED_STATUS

Transmission Start Time with
clock offset applied (3.2.2.1.9.3)

2: value is transmitted by float

MC Float type JULD JULD_STATUS

701
TSTFL

Iridium APEX
floats that send
Down-time end
time

Transmission Start Time based
on DETFL without clock offset
applied
(3.2.2.1.9.2)

3: value is directly computed from
relevant, transmitted float information

JULD_ADJUSTED JULD_ADJUSTED_STATUS

Transmission Start Time based
on DETFL with clock offset
applied (3.2.2.1.9.2)

3: value is directly computed from
relevant, transmitted float information

32

Argo data management Argo DAC Cookbook

3.2.2.2 NAVIS floats

3.2.2.2.1 Descent Start Time - NAVIS

DescentInit.

The DST should be in the JULD (or JULD_ADJUSTED if clock offset has been applied) variables in

the N_MEASUREMENT array with an MC = 100 and STATUS set to 2: value is transmitted by float.

In the N_CYCLE array, the value should be stored in the JULD_DESCENT_START variable and the

JULD_DESCENT_START_STATUS set to 2. If float clock offset has been estimated and applied,

make sure to fill in the CLOCK_OFFSET (N_CYCLE) variable so users know it has been applied.

3.2.2.2.2 First Stabilization Time - NAVIS

Unknown, so nothing should be included in the N_MEASUREMENT array.

In the N_CYCLE array, fill value should be stored in the JULD_FIRST_STABILIZATION and the

JULD_FIRST_STABILIZATION_STATUS.

3.2.2.2.3 Descent End Time - NAVIS

Can be interpolated from a line fit to the curve of Descent() pressure vs time. Calculate time when

pressure is within 3% of drift pressure.

The DET should be in the JULD (or JULD_ADJUSTED if clock offset has been applied) variables in

the N_MEASUREMENT array with an MC = 200 and STATUS set to 3: value is directly computed

from relevant, transmitted float information.

In the N_CYCLE array, the value should be stored in the JULD_DESCENT_END variable and the

JULD_DESCENT_END_STATUS set to 3 (computed from information transmitted directly by the

float). If the float clock offset has been estimated and applied, make sure to fill in the

CLOCK_OFFSET (N_CYCLE) variable so users know it has been applied.

3.2.2.2.4 Park End Time - NAVIS

GoDeepInit().

The PET should be in the JULD (or JULD_ADJUSTED if clock offset has been applied) variables in

the N_MEASUREMENT array with an MC = 300 and STATUS set to 2: value is transmitted by float.

In the N_CYCLE array, the value should be stored in the JULD_PARK_END variable and the

JULD_PARK_END_STATUS set to 2. If the float clock offset has been estimated and applied, make

sure to fill in the CLOCK_OFFSET (N_CYCLE) variable so users know it has been applied.

3.2.2.2.5 Deep Descent End Time - NAVIS

Can be interpolated from a line fit to the curve of ProfileInit() pressure vs time. Calculate time when

pressure is within 3% of profile pressure.

The DDET should be in the JULD (or JULD_ADJUSTED if clock offset has been applied) variables

in the N_MEASUREMENT array with an MC = 400 and STATUS set to 3: value is computed directly

from information transmitted by the float.

In the N_CYCLE array, the value should be stored in the JULD_PARK_END variable and the

JULD_PARK_END_STATUS set to 3. If the float clock offset has been estimated and applied, make

sure to fill in the CLOCK_OFFSET (N_CYCLE) variable so users know it has been applied.

33

Argo data management Argo DAC Cookbook

3.2.2.2.6 Ascent Start Time - NAVIS

Profile() Sample 0 initiated at XXXXX.

The AST should be in the JULD (or JULD_ADJUSTED if clock offset has been applied) variables in

the N_MEASUREMENT array with an MC = 500 and STATUS set to 2: value is transmitted by float.

In the N_CYCLE array, the value should be stored in the JULD_ASCENT_START variable and the

JULD_ASCENT_START_STATUS set to 2: value transmitted by float. If the float clock offset has

been estimated and applied, make sure to fill in the CLOCK_OFFSET (N_CYCLE) variable so users

know it has been applied.

3.2.2.2.7 Ascent End Time - NAVIS

SurfaceDetect().

The AET should be in the JULD (or JULD_ADJUSTED if clock offset has been applied) variables in

the N_MEASUREMENT array with an MC = 600 and STATUS set to 2: value is transmitted by float.

In the N_CYCLE array, the value should be stored in the JULD_ASCENT_END variable and the

JULD_ASCENT_END_STATUS set to 2: value transmitted by float. If the float clock offset has been

estimated and applied, make sure to fill in the CLOCK_OFFSET (N_CYCLE) variable so users know

it has been applied.

3.2.2.2.8 Transmission Start Time - NAVIS

TelemetryInit().

The TST should be in the JULD (or JULD_ADJUSTED if clock offset has been applied) variables in

the N_MEASUREMENT array with an MC = 700 and STATUS set to 2: value is transmitted by float.

In the N_CYCLE array, the value should be stored in the JULD_TRANSMISSION_START variable

and the JULD_TRANSMISSION_START_STATUS set to 2: value is transmitted by float. If the float

clock offset has been estimated and applied, make sure to fill in the CLOCK_OFFSET (N_CYCLE)

variable so users know it has been applied.

3.2.2.2.9 Transmission End Time - NAVIS

logout().

The TET should be in the JULD (or JULD_ADJUSTED if clock offset has been applied) variables in

the N_MEASUREMENT array with an MC = 800 and STATUS set to 2: value is transmitted by float.

In the N_CYCLE array, the value should be stored in the JULD_TRANSMISSION_END variable and

the JULD_TRANSMISSION_END_STATUS set to 2: value is transmitted by float. If the float clock

offset has been estimated and applied, make sure to fill in the CLOCK_OFFSET (N_CYCLE) variable

so users know it has been applied.

34

Argo data management Argo DAC Cookbook

N_MEASUREMENT Array

NAVIS floats
MC Float type JULD JULD_STATUS

100
DST

All NAVIS floats

Descent Start Time without
clock offset applied
DescentInit (3.2.2.2.1)

2: value is transmitted by float

JULD_ADJUSTED JULD_ADJUSTED_STATUS

Descent Start Time with clock
offset applied
DescentInit (3.2.2.2.1)

2: value is transmitted by float

MC Float type JULD JULD_STATUS

200
DET

All NAVIS floats

Descent End time without clock
offset applied (3.2.2.2.3)

3: value is directly computed from
relevant, transmitted float information

JULD_ADJUSTED JULD_ADJUSTED_STATUS

Descent End Time with clock
offset applied (3.2.2.2.3)

3: value is directly computed from
relevant, transmitted float information

MC Float type JULD JULD_STATUS

300
PET

All NAVIS floats

Park End Time without clock
offset applied - GoDeepInit()
(3.2.2.2.4)

2: value is transmitted by float

JULD_ADJUSTED JULD_ADJUSTED_STATUS

Park End Time with clock offset
applied - GoDeepInit()
(3.2.2.2.4)

2: value is transmitted by float

MC Float type JULD JULD_STATUS

400
DDET

All NAVIS floats

Deep Descent End Time
(3.2.2.2.5)

3: value is directly computed from
relevant, transmitted float information

JULD_ADJUSTED JULD_ADJUSTED_STATUS

Deep Descent End Time
(3.2.2.2.5)

3: value is directly computed from
relevant, transmitted float information

MC Float type JULD JULD_STATUS

500
AST

All NAVIS floats

Ascent Start Time without clock
offset applied (3.2.2.2.6)

2: value is transmitted by float

JULD_ADJUSTED JULD_ADJUSTED_STATUS

Ascent Start Time with clock
offset applied (3.2.2.2.6)

2: value is transmitted by float

MC Float type JULD JULD_STATUS

600
AET

All NAVIS floats

Ascent End Time without clock
offset applied - SurfaceDetect()
(3.2.2.2.7)

2: value is transmitted by float

JULD_ADJUSTED JULD_ADJUSTED_STATUS

Ascent End Time with clock
offset applied - SurfaceDetect()
(3.2.2.2.7)

2: value is transmitted by float

MC Float type JULD JULD_STATUS

700
TST

All NAVIS floats

Transmission Start Time without
clock offset applied -
TelemetryInit() (3.2.2.2.8)

2: value is transmitted by float

JULD_ADJUSTED JULD_ADJUSTED_STATUS

Transmission Start Time with
clock offset applied -
TelemetryInit() (3.2.2.2.8)

2: value is transmitted by float

MC Float type JULD JULD_STATUS

800
TET

All NAVIS floats

Transmission End Time without
clock offset applied - logout()
(3.2.2.2.9)

2: value is transmitted by float

JULD_ADJUSTED JULD_ADJUSTED_STATUS

Transmission End Time with
clock offset applied - logout()
(3.2.2.2.9)

2: value is transmitted by float

35

Argo data management Argo DAC Cookbook

3.2.2.3 NEMO floats

3.2.2.3.1 Descent Start Time - NEMO

DST is called descent_start_time or descent_starttime.

The DST should be in the JULD (or JULD_ADJUSTED if clock offset has been applied) variables in

the N_MEASUREMENT array with an MC = 100 and STATUS set to 2: value is transmitted by float.

In the N_CYCLE array, the value should be stored in the JULD_DESCENT_START variable and the

JULD_DESCENT_START_STATUS set to 2. If the float clock offset has been estimated and applied,

make sure to fill in the CLOCK_OFFSET (N_CYCLE) variable so users know it has been applied.

3.2.2.3.2 First Stabilization Time - NEMO

FST is not measured by the float and should be excluded from the N_MEASUREMENT array.

In the N_CYCLE array, the value should be stored in the JULD_FIRST_STABILIZATION variable

and the JULD_FIRST_STABILIZATION_STATUS set to fill value.

3.2.2.3.3 Descent End Time & Park Start Time - NEMO

PST is called parking_start_time and is not available for all floats. For newer floats with serial

numbers >113 this time will be in the recorded technical data. The time recorded here is either when

the floats reaches programmed parking depth under a controlled descent (actually measuring the

pressure) or at a programmed count of the pump for a parkcount descent. Both of these times are based

either on an actual measurement of pressure or on a descent timer, so they are characterized as Park

Start Time rather than Descent End Time. The PST should be in the JULD (or JULD_ADJUSTED if

clock offset has been applied) variables in the N_MEASUREMENT array with an MC = 250 and

STATUS set to 2: value is transmitted by float.

In the N_CYCLE array, the value should be stored in the JULD_PARK_START variable and the

JULD_PARK_START_STATUS set to 2. If the float clock offset has been estimated and applied,

make sure to fill in the CLOCK_OFFSET (N_CYCLE) variable so users know it has been applied.

The only exception is for a timeout error when the float, during a controlled descent, is not able to

reach the parking depth and aborts the procedure after a predetermined time. In this case the time of

the abort is recorded. If this timeout occurs, the time of abort should be recorded in the Descent End

Time variable as it is a timeout value. The DET should be in the JULD (or JULD_ADJUSTED if

clock offset has been applied) variables in the N_MEASUREMENT array with an MC = 200 and

STATUS set to 2: value is transmitted by float.

In the N_CYCLE array, the value should be stored in the JULD_DESCENT_END variable and the

JULD_DESCENT_END_STATUS set to 2. If the float clock offset has been estimated and applied,

make sure to fill in the CLOCK_OFFSET (N_CYCLE) variable so users know it has been applied.

For older floats that do not report a DET or PST, exclude it from the N_MEASUREMENT array.

In the N_CYCLE array, fill value should be stored in the JULD_DESCENT_END,

JULD_DESCENT_END_STATUS, JULD_PARK_START and JULD_PARK_START_STATUS

variables.

3.2.2.3.4 Park End Time - NEMO

PET is called upcast_start_time. This variable is available for all floats with serial number >113.

While this may seem like an odd name, the float manufacturer chose this following their internal logic.

36

Argo data management Argo DAC Cookbook

The PET should be in the JULD (or JULD_ADJUSTED if clock offset has been applied) variables in

the N_MEASUREMENT array with an MC = 300 and STATUS set to 2: value is transmitted by float.

In the N_CYCLE array, the value should be stored in the JULD_PARK_END variable and the

JULD_PARK_END_STATUS set to 2. If the float clock offset has been estimated and applied, make

sure to fill in the CLOCK_OFFSET (N_CYCLE) variable so users know it has been applied.

If the upcast_start_time is not available, it should be excluded from the N_MEASUREMENT array.

In the N_CYCLE array, fill value should be stored in the JULD_PARK_END and the

JULD_PARK_END_STATUS variables.

3.2.2.3.5 Deep Descent End Time - NEMO

DDET is not an event for this float, so it should be excluded from the N_MEASUREMENT array.

In the N_CYCLE array, fill value should be stored in the JULD_DEEP_DESCENT_END and the

JULD_DEEP_DESCENT_END_STATUS variables.

3.2.2.3.6 Ascent Start Time - NEMO

AST is called ascent_start_time or ascent_starttime.

The AST should be in the JULD (or JULD_ADJUSTED if clock offset has been applied) variables in

the N_MEASUREMENT array with an MC = 500 and STATUS set to 2: value is transmitted by float.

In the N_CYCLE array, the value should be stored in the JULD_ASCENT_START variable and the

JULD_ASCENT_START_STATUS set to 2. If the float clock offset has been estimated and applied,

make sure to fill in the CLOCK_OFFSET (N_CYCLE) variable so users know it has been applied.

3.2.2.3.7 Ascent End Time - NEMO

AET is called surfacingtime or ascent_end_time.

The AET should be in the JULD (or JULD_ADJUSTED if clock offset has been applied) variables in

the N_MEASUREMENT array with an MC = 600 and STATUS set to 2: value is transmitted by float.

In the N_CYCLE array, the value should be stored in the JULD_ASCENT_END variable and the

JULD_ASCENT_END_STATUS set to 2. If the float clock offset has been estimated and applied,

make sure to fill in the CLOCK_OFFSET (N_CYCLE) variable so users know it has been applied.

3.2.2.3.8 Transmission Start Time - NEMO

TST is called end_of_profile_time or surface_start_time.

The TST should be in the JULD (or JULD_ADJUSTED if clock offset has been applied) variables in

the N_MEASUREMENT array with an MC = 700 and STATUS set to 2: value is transmitted by float.

In the N_CYCLE array, the value should be stored in the JULD_TRANSMISSION_START variable

and the JULD_TRANSMISSION_START_STATUS set to 2. If the float clock offset has been

estimated and applied, make sure to fill in the CLOCK_OFFSET (N_CYCLE) variable so users know

it has been applied.

3.2.2.3.9 Transmission End Time - NEMO

TET is not known for the actual profile, the floats starts descending immediately after transmission.

But the DST for the next profile will be the TET of the current profile. Before this time is known, the

TET is a fill value with a status of "9".

37

Argo data management Argo DAC Cookbook

The TET should be set to fill value for the current cycle in the JULD variable in the

N_MEASUREMENT array with an MC = 800 and STATUS set to 9: value is not immediately known,

but believe it can be estimated later.

When the next cycle arrives, the TET should be set to the DST of current profile in the JULD (or

JULD_ADJUSTED if clock offset has been applied) variable in the N_MEASUREMENT array with

an MC = 800 and STATUS set to 2: value is transmitted by float.

For the N_CYCLE array, fill value should be stored in the JULD_TRANSMISSION_END variable

and the JULD_TRANSMISSION_END_STATUS set to 9 for the current cycle.

Once the DST of the next profile occurs, and hence the TET of the previous profile is known, the TET

can be filled in the previous cycle.

The value should be stored in the JULD_TRANSMISSION_END variable and the

JULD_TRANSMISSION_END_STATUS set to 2. If the float clock offset has been estimated and

applied, make sure to fill in the CLOCK_OFFSET (N_CYCLE) variable so users know it has been

applied.

N_MEASUREMENT Array

NEMO floats
MC Float type JULD JULD_STATUS

100
DST

All NEMO floats

Descent Start Time without
clock offset applied (3.2.2.3.1)

2: value is transmitted by float

JULD_ADJUSTED JULD_ADJUSTED_STATUS

Descent Start Time with clock
offset applied (3.2.2.3.1)

2: value is transmitted by float

MC Float type JULD JULD_STATUS

200
DET

NEMO floats
with serial
number > 113
& timeout error
from not
reaching
parking depth

Time of abort without clock
offset applied (3.2.2.3.3)

2: value is transmitted by float

JULD_ADJUSTED JULD_ADJUSTED_STATUS

Time of abort with clock offset
applied (3.2.2.3.3)

2: value is transmitted by float

MC Float type JULD JULD_STATUS

250
PST

NEMO floats
with serial
number > 113
& able to reach
parking depth

Park Start Time without clock
offset applied (3.2.2.3.3)

2: value is transmitted by float

JULD_ADJUSTED JULD_ADJUSTED_STATUS

Park Start Time with clock offset
applied (3.2.2.3.3)

2: value is transmitted by float

MC Float type JULD JULD_STATUS

300
PET

NEMO floats
with serial
number > 113

Park End Time without clock
offset applied -
upcast_start_time (3.2.2.3.4)

2: value is transmitted by float

JULD_ADJUSTED JULD_ADJUSTED_STATUS

Park End Time with clock offset
applied - upcast_start_time
(3.2.2.3.4)

2: value is transmitted by float

MC Float type JULD JULD_STATUS

500
AST

All NEMO floats

Ascent Start Time without clock
offset applied (3.2.2.3.6)

2: value is transmitted by float

JULD_ADJUSTED JULD_ADJUSTED_STATUS

Ascent Start Time with clock
offset applied (3.2.2.3.6)

2: value is transmitted by float

MC Float type JULD JULD_STATUS

600
AET

All NEMO floats

Ascent End Time without clock
offset applied (3.2.2.3.7)

2: value is transmitted by float

JULD_ADJUSTED JULD_ADJUSTED_STATUS

Ascent End Time with clock
offset applied (3.2.2.3.7)

2: value is transmitted by float

MC Float type JULD JULD_STATUS

700
TST

All NEMO floats

Transmission Start Time without
clock offset applied (3.2.2.3.8)

2: value is transmitted by float

JULD_ADJUSTED JULD_ADJUSTED_STATUS

38

Argo data management Argo DAC Cookbook

Transmission Start Time with
clock offset applied (3.2.2.3.8)

2: value is transmitted by float

MC Float type JULD JULD_STATUS

800
TET

All NEMO floats
with only
current cycle
completed

Fill value (3.2.2.3.9) 9: not immediately know, but believe
value can be estimated later

JULD_ADJUSTED JULD_ADJUSTED_STATUS

Fill value (3.2.2.3.9) 9: not immediately know, but believe
value can be estimated later

MC Float type JULD JULD_STATUS

800
TET

All NEMO floats
with next cycle
completed

Transmission End Time without
clock offset applied (3.2.2.3.9)

2: value is transmitted by float

JULD_ADJUSTED JULD_ADJUSTED_STATUS

Transmission End Time with
clock offset applied (3.2.2.3.9)

2: value is transmitted by float

39

Argo data management Argo DAC Cookbook

3.2.2.4 NINJA floats

There are two types of NINJA floats: those deployed in 2002 - 2007 and those deployed in 2008. For

the floats deployed in 2002 - 2007, some times are directly provided by the float (the day (day number

in the current month), hours, minutes and seconds of the event are transmitted). Other times must be

computed from technical information.

All these times must be corrected for clock offset before storage in the N_CYCLE and

N_MEASUREMENT arrays.

3.2.2.4.1 Dated events for NINJA 300001, 300002 and 300003 versions

3.2.2.4.1.1 Descent Start Time - NINJA

The DST is directly provided by these NINJA versions (Descent_Start_Day): the day (day number in

the month), hours, minutes and seconds of DST are transmitted.

The DST should be in the JULD (or JULD_ADJUSTED if clock offset has been applied) variables in

the N_MEASUREMENT array with an MC = 100 and STATUS set to 2: value is transmitted by float.

In the N_CYCLE array, the value should be stored in the JULD_DESCENT_START variable and the

JULD_DESCENT_START_STATUS set to 2. If the float clock offset has been estimated and applied,

make sure to fill in the CLOCK_OFFSET (N_CYCLE) variable so users know it has been applied.

3.2.2.4.1.2 First Stabilization Time - NINJA

Three Stabilization Times are provided by these NINJA versions (as hours and minutes elapsed since

DST) with the associated pressures.

The three Stabilization Times and pressures should be stored in the JULD (or JULD_ADJUSTED if

clock offset has been applied) and PRES variables in the N_MEASUREMENT array with the MC set

to 150 for the first stabilization and 189 for the next two. STATUS should be set to 2: value

transmitted by float.

In the N_CYCLE array, the first stabilization value should be stored in the

JULD_FIRST_STABILIZATION variable and the JULD_FIRST_STABILIZATION_STATUS set to

2. If the float clock offset has been estimated and applied, make sure to fill in the CLOCK_OFFSET

(N_CYCLE) variable so users know it has been applied.

3.2.2.4.1.3 Park Start Time - NINJA

The PST is directly provided by these NINJA versions (Parking_Depth_in_Time): the day (day

number in the month), hours, minutes and seconds of DST are transmitted.

The associated pressure is also transmitted.

The time and pressure should be stored in the JULD (or JULD_ADJUSTED if clock offset has been

applied) and PRES variables in the N_MEASUREMENT array with the MC set to 250 and STATUS

set to 2: value transmitted by float.

In the N_CYCLE array, the value should be stored in the JULD_PARK_START variable and the

JULD_PARK_START_STATUS set to 2. If the float clock offset has been estimated and applied,

make sure to fill in the CLOCK_OFFSET (N_CYCLE) variable so users know it has been applied.

3.2.2.4.1.4 Park End Time - NINJA

NINJA 30001 can only observe given information on the parking depth (parking depth = profile

depth) just after its deployed. Then, the times from PET to AST are not in the technical message.

40

Argo data management Argo DAC Cookbook

NINJA 30002 and 300003 can observe from profile depth which is deeper than parking depth, but

their firmware are only updated a little from 30001. The times from PET to AST are not added in the

technical message. Therefore, we cannot know the times from PET to AST.

Unfortunately, there is no constant amount of time from AST. Since the PET is an event that occurs

for the float, without the time known, it will be fill value in the JULD & JULD_ADJUSTED variables

in the N_MEASUREMENT array with an MC = 300 and STATUS set to 9 as it might be estimated at

a later time.

In the N_CYCLE array, fill value should be stored in the JULD_PARK_END and the

JULD_PARK_END_STATUS should be set to 9.

3.2.2.4.1.5 Deep Descent End Time - NINJA

We don't know the NINJA strategy (but DDET is not as important as PET).

For now, store it as fill value in the JULD and JULD_ADJUSTED variables in the

N_MEASUREMENT array with an MC = 400 JULD_STATUS of '9'.

In the N_CYCLE array, fill value should be stored in the JULD_DEEP_DESCENT_END variable and

the JULD_DEEP_DESCENT_END_STATUS should be set to 9. If the float clock offset has been

estimated and applied, make sure to fill in the CLOCK_OFFSET (N_CYCLE) variable so users know

it has been applied.

3.2.2.4.1.6 Ascent Start Time - NINJA

The AST is directly provided by these NINJA versions (Ascent_Start_Day): the day (day number in

the month), hours, minutes and seconds of AST are transmitted.

The AST should be stored in the JULD (or JULD_ADJUSTED if clock offset has been applied)

variable in the N_MEASUREMENT array with the MC set to 500 and STATUS set to 2: value

transmitted by float.

In the N_CYCLE array, the value should be stored in the JULD_ASCENT_START variable and the

JULD_ASCENT_START_STATUS set to 2. If the float clock offset has been estimated and applied,

make sure to fill in the CLOCK_OFFSET (N_CYCLE) variable so users know it has been applied.

3.2.2.4.1.7 Ascent End Time - NINJA

The AET is not directly provided by these NINJA versions.

 However, these floats provide the elapsed time for each vertical slice of ascent (from the max pressure

to 2000 dbar for the first slice; and for each 100 dbar thick other slices until the surface).

The cumulative sum of these times is thus the profile duration and can be used to compute AET from

AST.

The AET should be stored in the JULD (or JULD_ADJUSTED if clock offset has been applied)

variable in the N_MEASUREMENT array with the MC set to 600 and STATUS set to 3: value is

directly computed from relevant, transmitted float information.

In the N_CYCLE array, the corresponding sum should be stored in the JULD_ASCENT_END

variable and the JULD_ASCENT_END_STATUS set to 3. If the float clock offset has been estimated

and applied, make sure to fill in the CLOCK_OFFSET (N_CYCLE) variable so users know it has

been applied.

AET is stored as Ascent_0db_time

41

Argo data management Argo DAC Cookbook

3.2.2.4.1.8 Transmission Start Time - NINJA

The TST is directly provided by these NINJA versions: the day (day number in the month), hours,

minutes and seconds of TST are transmitted.

The TST should be stored in the JULD (or JULD_ADJUSTED if clock offset has been applied)

variable in the N_MEASUREMENT array with the MC set to 700 and STATUS set to 2: value

transmitted by float.

In the N_CYCLE array, the value should be stored in the JULD_TRANSMISSION_START variable

and the JULD_TRANSMISSION_START_STATUS set to 2. If the float clock offset has been

estimated and applied, make sure to fill in the CLOCK_OFFSET (N_CYCLE) variable so users know

it has been applied.

3.2.2.4.1.9 Transmission End Time - NINJA

TET is not known. Since the TET is an event that occurs for the float, without the time known, it will

be fill value in the JULD & JULD_ADJUSTED variables in the N_MEASUREMENT array with an

MC = 800 and STATUS set to 9 as it might be estimated at a later time.

In the N_CYCLE array, fill value should be stored in the JULD_TRANSMISSION_END variable and

the JULD_TRANSMISSION_END_STATUS set to 9. If the float clock offset has been estimated and

applied, make sure to fill in the CLOCK_OFFSET (N_CYCLE) variable so users know it has been

applied.

3.2.2.4.2 2008 NINJA floats

No timing information is available in real time or in delayed mode. Nothing should be included in the

N_MEASUREMENT array. All cycle timing variables and their status flags should be fill value in the

N_CYCLE array.

N_MEASUREMENT Array

NINJA floats deployed in 2002 - 2007
MC Float type JULD JULD_STATUS

100
DST

2002 - 2007
NINJA floats

Descent Start Time without
clock offset applied (3.2.2.4.1.1)

2: value is transmitted by float

JULD_ADJUSTED JULD_ADJUSTED_STATUS

Descent Start Time with clock
offset applied (3.2.2.4.1.1)

2: value is transmitted by float

MC Float type JULD JULD_STATUS

150
FST

2002 - 2007
NINJA floats

First Stabilization Time without
clock offset applied (3.2.2.4.1.2)

2: value is transmitted by float

JULD_ADJUSTED JULD_ADJUSTED_STATUS

First Stabilization Time with
clock offset applied (3.2.2.4.1.2)

2: value is transmitted by float

MC Float type JULD JULD_STATUS

189
ST

2002 - 2007
NINJA floats

Second & Third Stabilization
Times without clock offset
applied (3.2.2.4.1.2)

2: value is transmitted by float

JULD_ADJUSTED JULD_ADJUSTED_STATUS

Second & Third Stabilization
Times with clock offset applied
(3.2.2.4.1.2)

2: value is transmitted by float

MC Float type JULD JULD_STATUS

250
PST

2002 - 2007
NINJA floats

Park Start Time without clock
offset applied (3.2.2.4.1.3)

2: value is transmitted by float

JULD_ADJUSTED JULD_ADJUSTED_STATUS

Park Start Time with clock offset
applied (3.2.2.4.1.3)

2: value is transmitted by float

MC Float type JULD JULD_STATUS

300
PET

2002 - 2007
NINJA floats

Fill value (3.2.2.4.1.4) 9: not immediately know, but believe
value can be estimated later

JULD_ADJUSTED JULD_ADJUSTED_STATUS

42

Argo data management Argo DAC Cookbook

Fill value (3.2.2.4.1.4) 9: not immediately know, but believe
value can be estimated later

MC Float type JULD JULD_STATUS

400
DDET

2002 - 2007
NINJA floats

Fill value (3.2.2.4.1.5) 9: not immediately know, but believe
value can be estimated later

JULD_ADJUSTED JULD_ADJUSTED_STATUS

Fill value (3.2.2.4.1.5) 9: not immediately know, but believe
value can be estimated later

MC Float type JULD JULD_STATUS

500
AST

2002 - 2007
NINJA floats

Ascent Start Time without clock
offset applied (3.2.2.4.1.6)

2: value is transmitted by float

JULD_ADJUSTED JULD_ADJUSTED_STATUS

Ascent Start Time with clock
offset applied (3.2.2.4.1.6)

2: value is transmitted by float

MC Float type JULD JULD_STATUS

600
AET

2002 - 2007
NINJA floats

Ascent End Time without clock
offset applied (3.2.2.4.1.7)

3: value is directly computed from
relevant, transmitted float information

JULD_ADJUSTED JULD_ADJUSTED_STATUS

Ascent End Time with clock
offset applied (3.2.2.4.1.7)

3: value is directly computed from
relevant, transmitted float information

MC Float type JULD JULD_STATUS

700
TST

2002 - 2007
NINJA floats

Transmission Start Time without
clock offset applied (3.2.2.4.1.8)

2: value is transmitted by float

JULD_ADJUSTED JULD_ADJUSTED_STATUS

Transmission Start Time with
clock offset applied (3.2.2.4.1.8)

2: value is transmitted by float

MC Float type JULD JULD_STATUS

800
TET

2002 - 2007
NINJA floats

Fill value (3.2.2.4.1.9) 9: not immediately know, but believe
value can be estimated later

JULD_ADJUSTED JULD_ADJUSTED_STATUS

Fill value (3.2.2.4.1.9) 9: not immediately know, but believe
value can be estimated later

43

Argo data management Argo DAC Cookbook

3.2.2.5 NOVA floats

The housekeeping data packet has most of the cycle timing variables in it. The variable names and

how they are calculated are described below.

3.2.2.5.1 Descent Start Time - NOVA

DST is not transmitted directly by the float, but must be calculated from the NVS variable. NVS is the

number of valve activations at the surface. There is no unit on this and the minimum value is zero and

the maximum value is 255. The start byte is 10 and the bit length is 8. The decoding equation is y = x.

DST = NVS/3 + time stamp of previous Iridium transmission.

The DST should be in the JULD (or JULD_ADJUSTED if clock offset has been applied) variables in

the N_MEASUREMENT array with an MC = 100 and STATUS set to 3: value is directly computed

from relevant, transmitted float information.

In the N_CYCLE array, the value should be stored in the JULD_DESCENT_START variable and the

JULD_DESCENT_START_STATUS set to 3.. If the float clock offset has been estimated and

applied, make sure to fill in the CLOCK_OFFSET (N_CYCLE) variable so users know it has been

applied.

3.2.2.5.2 First Stabilization Time - NOVA

FST is called FST and is the time in the day when the float first activated the valve during its descent.

It is measured in hours, had a minimum value of zero and a maximum value of 23.9. The start byte is 5

and the bit length is 8. The decoding equation is y = 0.1 * x.

The FST should be in the JULD (or JULD_ADJUSTED if clock offset has been applied) variables in

the N_MEASUREMENT array with an MC = 150 and STATUS set to 2: value is transmitted by float.

In the N_CYCLE array, the first stabilization value should be stored in the

JULD_FIRST_STABILIZATION variable and the JULD_FIRST_STABILIZATION_STATUS set to

2. If the float clock offset has been estimated and applied, make sure to fill in the CLOCK_OFFSET

(N_CYCLE) variable so users know it has been applied.

3.2.2.5.3 Park Start Time - NOVA

PST is called EDT and is the time in the day when the float ended its descent to parking. It is

measured in hours, has a minimum value of zero and a maximum value of 23.9. The start byte is 4 and

the bit length is 8. The equation to calculate it is y = 0.1 * x.

The PST should be in the JULD (or JULD_ADJUSTED if clock offset has been applied) variables in

the N_MEASUREMENT array with an MC = 250 and STATUS set to 2: value is transmitted by float.

In the N_CYCLE array, the value should be stored in the JULD_PARK_START variable and the

JULD_PARK_START_STATUS set to 2. If the float clock offset has been estimated and applied,

make sure to fill in the CLOCK_OFFSET (N_CYCLE) variable so users know it has been applied.

3.2.2.5.4 Park End Time - NOVA

PET is called PET and is the time in the day when the float started its descent to profile depth. The

unit is hours, has a minimum value of zero and a maximum value of 23.9. The start byte is 6 and the

bit length is 8. The equation to calculate it is y = 0.1 * x.

The PET should be in the JULD (or JULD_ADJUSTED if clock offset has been applied) variables in

the N_MEASUREMENT array with an MC = 300 and STATUS set to 2: value is transmitted by float.

44

Argo data management Argo DAC Cookbook

3.2.2.5.5 Deep Descent End Time - NOVA

DDET is called DDET and is the time in the day when the float achieved its profile depth. The unit is

hours, has a minimum value of zero and a maximum value of 23.9. The start byte is 7 and the bit

length is 8. The decoding equation is y = 0.1 * x.

The DDET should be in the JULD (or JULD_ADJUSTED if clock offset has been applied) variables

in the N_MEASUREMENT array with an MC = 400 and STATUS set to 2: value is transmitted by

float.

In the N_CYCLE array, the value should be stored in the JULD_DEEP_DESCENT_END variable and

the JULD_DEEP_DESCENT_END_STATUS set to 2. If the float clock offset has been estimated and

applied, make sure to fill in the CLOCK_OFFSET (N_CYCLE) variable so users know it has been

applied.

3.2.2.5.6 Ascent Start Time - NOVA

AST is called SAT and is the time in the day when the float started its ascending profile. The unit is

hours, has a minimum value of zero and a maximum value of 23.9. The start byte is 8 and the bit

length is 8. The decoding equation is y = 0.1 * x.

The AST should be in the JULD (or JULD_ADJUSTED if clock offset has been applied) variables in

the N_MEASUREMENT array with an MC = 500 and STATUS set to 2: value is transmitted by float.

In the N_CYCLE array, the value should be stored in the JULD_ASCENT_START variable and the

JULD_ASCENT_START_STATUS set to 2. If the float clock offset has been estimated and applied,

make sure to fill in the CLOCK_OFFSET (N_CYCLE) variable so users know it has been applied.

3.2.2.5.7 Ascent End Time - NOVA

AET is called EAT and is the time in the day when the float ended its ascending profile. The unit is

hours, has a minimum value of zero and a maximum value of 23.9. The start byte is 9 and the bit

length is 8. The decoding equation is y = 0.1 * x.

The AET should be in the JULD (or JULD_ADJUSTED if clock offset has been applied) variables in

the N_MEASUREMENT array with an MC = 600 and STATUS set to 2: value is transmitted by float.

3.2.2.5.8 Transmission Start Time - NOVA

TST is the same as AET.

The TST should be in the JULD (or JULD_ADJUSTED if clock offset has been applied) variables in

the N_MEASUREMENT array with an MC = 800 and STATUS set to 2: value is transmitted by float.

In the N_CYCLE array, the value should be stored in the JULD_TRANSMISSION_START variable

and the JULD_TRANSMISSION_START_STATUS set to 2. If the float clock offset has been

estimated and applied, make sure to fill in the CLOCK_OFFSET (N_CYCLE) variable so users know

it has been applied.

3.2.2.5.9 Transmission End Time - NOVA

For Iridium, there are two values transmitted. When the float reaches the surface, it acquires a GPS

position. The time to do this is represented by TTFF (in seconds). After the GPS is acquired, then the

Iridium transceiver is activated. The time to do this is represented by SBDT (again in seconds). After

completion of the transmission, a satellite check is done to look for incoming commands. If there is

one, it is processed and then the float starts its next profile. Note that SBDT refers to the previous

profile, not the current one, as it is calculated AFTER the Iridium transmission takes place.

45

Argo data management Argo DAC Cookbook

TET = TST + SBDT from previous cycle.

The TET should be set to fill value for the current cycle in the JULD variable in the

N_MEASUREMENT array with an MC = 800 and STATUS set to 9: value is not immediately known,

but believe it can be estimated later.

When the next cycle arrives, the TET should be filled in the JULD (or JULD_ADJUSTED if clock

offset has been applied) variable in the N_MEASUREMENT array with an MC = 800 and STATUS

set to 3: value is directly computed from relevant, transmitted float information.

For the N_CYCLE array, fill value should be stored in the JULD_TRANSMISSION_END variable

and the JULD_TRANSMISSION_END_STATUS set to 9 for the current cycle.

Once the next profile occurs, and hence the TET of the previous profile is known, the TET can be

filled in the previous cycle.

The value should be stored in the JULD_TRANSMISSION_END variable and the

JULD_TRANSMISSION_END_STATUS set to 3. If the float clock offset has been estimated and

applied, make sure to fill in the CLOCK_OFFSET (N_CYCLE) variable so users know it has been

applied.

N_MEASUREMENT Array

NOVA floats
MC Float type JULD JULD_STATUS

100
DST

All NOVA floats

Descent Start Time without
clock offset applied (3.2.2.5.1)

3: value is directly computed from
relevant, transmitted float information

JULD_ADJUSTED JULD_ADJUSTED_STATUS

Descent Start Time with clock
offset applied (3.2.2.5.1)

3: value is directly computed from
relevant, transmitted float information

MC Float type JULD JULD_STATUS

150
FST

All NOVA floats

First Stabilization Time without
clock offset applied (3.2.2.5.2)

2: value is transmitted by float

JULD_ADJUSTED JULD_ADJUSTED_STATUS

First Stabilization Time with
clock offset applied (3.2.2.5.2)

2: value is transmitted by float

MC Float type JULD JULD_STATUS

250
PST

All NOVA floats

Park Start Time without clock
offset applied (3.2.2.5.3)

2: value is transmitted by float

JULD_ADJUSTED JULD_ADJUSTED_STATUS

Park Start Time with clock offset
applied (3.2.2.5.3)

2: value is transmitted by float

MC Float type JULD JULD_STATUS

300
PET

All NOVA floats

Park End Time without clock
offset applied (3.2.2.5.4)

2: value is transmitted by float

JULD_ADJUSTED JULD_ADJUSTED_STATUS

Park End Time with clock offset
applied (3.2.2.5.4)

2: value is transmitted by float

MC Float type JULD JULD_STATUS

400
DDET

All NOVA floats

Deep Descent End Time without
clock offset applied (3.2.2.5.5)

2: value is transmitted by float

JULD_ADJUSTED JULD_ADJUSTED_STATUS

Deep Descent End Time with
clock offset applied (3.2.2.5.5)

2: value is transmitted by float

MC Float type JULD JULD_STATUS

500
AST

All NOVA floats

Ascent Start Time without clock
offset applied (3.2.2.5.6)

2: value is transmitted by float

JULD_ADJUSTED JULD_ADJUSTED_STATUS

Ascent Start Time with clock
offset applied (3.2.2.5.6)

2: value is transmitted by float

MC Float type JULD JULD_STATUS

600
AET

All NOVA floats

Ascent End Time without clock
offset applied (3.2.2.5.7)

2: value is transmitted by float

JULD_ADJUSTED JULD_ADJUSTED_STATUS

Ascent End Time with clock 2: value is transmitted by float

46

Argo data management Argo DAC Cookbook

offset applied (3.2.2.5.7)

MC Float type JULD JULD_STATUS

700
TST

All NOVA floats

Transmission Start Time without
clock offset applied (3.2.2.5.8)

2: value is transmitted by float

JULD_ADJUSTED JULD_ADJUSTED_STATUS

Transmission Start Time with
clock offset applied (3.2.2.5.8)

2: value is transmitted by float

MC Float type JULD JULD_STATUS

800
TET

All NOVA floats
with only
current cycle
completed

Fill value (3.2.2.5.9) 9: not immediately know, but believe
value can be estimated later

JULD_ADJUSTED JULD_ADJUSTED_STATUS

Fill value (3.2.2.5.9) 9: not immediately know, but believe
value can be estimated later

MC Float type JULD JULD_STATUS

800
TET

All NOVA floats
with next cycle
completed

Transmission End Time without
clock offset applied (3.2.2.5.9)

2: value is transmitted by float

JULD_ADJUSTED JULD_ADJUSTED_STATUS

Transmission End Time with
clock offset applied (3.2.2.5.9)

2: value is transmitted by float

47

Argo data management Argo DAC Cookbook

3.2.2.6 PROVOR/ARVOR floats

PROVOR floats directly provide, in the technical message, cycle timing information.

More precisely the provided times can be decoded to obtain the hours and minutes of a timed event but

the corresponding day must be obtained by other means (see §3.2.2.6.8).

For PROVOR Argos floats, these times must be corrected for clock offset whereas for PROVOR

Iridium floats the clock is set each cycle, thus the clock offset can be neglected.

Most of the times have an unusual time resolution (see §3.2.2.6.9) which must be stored in the data.

PROVOR floats do not provide a quick, easy real time estimate for Transmission End Time, but the

float actually experiences this event. Therefore, in the N_MEASUREMENT array TET (MC = 800)

should be fill value and its status flag should be a "9".

In the N_CYCLE array, fill value should be stored in the JULD_TRANSMISSION_END variable and

the JULD_TRANSMISSION_END_STATUS should be set to 9.

PROVOR floats do experience both JULD_DESCENT_END (DET) and

JULD_DEEP_DESCENT_END (DDET), but there is no way to know these times right now.

Therefore, in the N_MEASUREMENT array DET (MC = 200) and DDET (MC = 400) should be fill

value and its status flag should be a "9".

In the N_CYCLE array, fill value should be stored in the JULD_DESCENT_END and

JULD_DEEP_DESCENT_END variables and JULD_DESCENT_END_STATUS and

JULD_DEEP_DESCENT_END_STATUS should be set to 9.

3.2.2.6.1 Timed events for PROVOR 101011, 101012, 101014, 101015, 101013, 100001,
101017, 101018 and 101019 versions

All status flags should be a "2" since they come directly from the float.

3.2.2.6.1.1 Descent Start Time

The hours and minutes of the DST are provided, in the technical message, by the technical parameter

"descent start time".

In the N_CYCLE array, the value should be stored in the JULD_DESCENT_START variable and the

JULD_DESCENT_START_STATUS set to 2. If the float clock offset has been estimated and applied,

make sure to fill in the CLOCK_OFFSET (N_CYCLE) variable so users know it has been applied.

3.2.2.6.1.2 First Stabilization Time

The hours and minutes of the FST are provided, in the technical message, by the technical parameter

"float First Stabilization Time" (or "first float First Stabilization Time" for PROVOR 101018 and

101019 versions).

The associated pressure (in bars) is also provided, in the technical message, by the technical

parameter "float stabilization pressure" (or "first float stabilization pressure" for PROVOR 101018 and

101019 versions).

The stabilization value should be stored in the JULD_FIRST_STABILIZATION variable and the

JULD_FIRST_STABILIZATION_STATUS set to 2. If the float clock offset has been estimated and

applied, make sure to fill in the CLOCK_OFFSET (N_CYCLE) variable so users know it has been

applied.

48

Argo data management Argo DAC Cookbook

3.2.2.6.1.3 Park Start Time

The hours and minutes of the PST are provided, in the technical message, by the technical parameter

"end of descent time".

In the N_CYCLE array, the value should be stored in the JULD_PARK_START variable and the

JULD_PARK_START_STATUS set to 2. If the float clock offset has been estimated and applied,

make sure to fill in the CLOCK_OFFSET (N_CYCLE) variable so users know it has been applied.

3.2.2.6.1.4 Park End Time

The hours and minutes of the PET are provided, in the technical message, by the technical parameter

"profile descent start time".

In the N_CYCLE array, the value should be stored in the JULD_PARK_END variable and the

JULD_PARK_END_STATUS set to 2. If the float clock offset has been estimated and applied, make

sure to fill in the CLOCK_OFFSET (N_CYCLE) variable so users know it has been applied.

3.2.2.6.1.5 Deep Park Start Time

The hours and minutes of the DPST are provided, in the technical message, by the technical parameter

"profile descent stop time".

In the N_CYCLE array, the value should be stored in the JULD_DEEP_PARK_START variable and

the JULD_DEEP_PARK_START_STATUS set to 2. If the float clock offset has been estimated and

applied, make sure to fill in the CLOCK_OFFSET (N_CYCLE) variable so users know it has been

applied.

3.2.2.6.1.6 Ascent Start Time

The hours and minutes of the AST are provided, in the technical message, by the technical parameter

"profile ascent start time".

In the N_CYCLE array, the value should be stored in the JULD_ASCENT_START variable and the

JULD_ASCENT_START_STATUS set to 2. If the float clock offset has been estimated and applied,

make sure to fill in the CLOCK_OFFSET (N_CYCLE) variable so users know it has been applied.

3.2.2.6.1.7 Ascent End Time

The AET is deduced from TST by the following relation: AET = TST - 16 minutes

In the N_CYCLE array, the corresponding sum should be stored in the JULD_ASCENT_END

variable and the JULD_ASCENT_END_STATUS set to 2. If the float clock offset has been estimated

and applied, make sure to fill in the CLOCK_OFFSET (N_CYCLE) variable so users know it has

been applied.

3.2.2.6.1.8 Transmission Start Time

The hours and minutes of the TST are provided, in the technical message, by the technical parameter

"time at end of ascent".

In the N_CYCLE array, the value should be stored in the JULD_TRANSMISSION_START variable

and the JULD_TRANSMISSION_START_STATUS set to 2. If the float clock offset has been

estimated and applied, make sure to fill in the CLOCK_OFFSET (N_CYCLE) variable so users know

it has been applied.

49

Argo data management Argo DAC Cookbook

N_MEASUREMENT Array

PROVOR floats 101011, 101012, 101014, 101015, 101013, 100001, 101017, 101018 and
101019 versions
MC Float type JULD JULD_STATUS

100
DST

101011,
101012,
101014,
101015,
101013,
100001,
101017,
101018,
101019

Descent Start Time without
clock offset applied (3.2.2.6.1.1)

2: value is transmitted by float

JULD_ADJUSTED JULD_ADJUSTED_STATUS

Descent Start Time with clock
offset applied (3.2.2.6.1.1)

2: value is transmitted by float

MC Float type JULD JULD_STATUS

150
FST

101011,
101012,
101014,
101015,
101013,
100001,
101017,
101018,
101019

First Stabilization Time without
clock offset applied (3.2.2.6.1.2)

2: value is transmitted by float

JULD_ADJUSTED JULD_ADJUSTED_STATUS

First Stabilization Time with
clock offset applied (3.2.2.6.1.2)

2: value is transmitted by float

MC Float type JULD JULD_STATUS

250
PST

101011,
101012,
101014,
101015,
101013,
100001,
101017,
101018,
101019

Park Start Time without clock
offset applied (3.2.2.6.1.3)

2: value is transmitted by float

JULD_ADJUSTED JULD_ADJUSTED_STATUS

Park Start Time with clock offset
applied (3.2.2.6.1.3)

2: value is transmitted by float

MC Float type JULD JULD_STATUS

300
PET

101011,
101012,
101014,
101015,
101013,
100001,
101017,
101018,
101019

Park End Time without clock
offset applied (3.2.2.6.1.4)

2: value is transmitted by float

JULD_ADJUSTED JULD_ADJUSTED_STATUS

Park End Time with clock offset
applied (3.2.2.6.1.4)

2: value is transmitted by float

MC Float type JULD JULD_STATUS

450
DPST

101011,
101012,
101014,
101015,
101013,
100001,
101017,
101018,
101019

Deep Park Start Time without
clock offset applied (3.2.2.6.1.5)

2: value is transmitted by float

JULD_ADJUSTED JULD_ADJUSTED_STATUS

Deep Park Start Time with clock
offset applied (3.2.2.6.1.5)

2: value is transmitted by float

MC Float type JULD JULD_STATUS

500
AST

101011,
101012,
101014,
101015,
101013,
100001,
101017,
101018,
101019

Ascent Start Time without clock
offset applied (3.2.2.6.1.6)

2: value is transmitted by float

JULD_ADJUSTED JULD_ADJUSTED_STATUS

Ascent Start Time with clock
offset applied (3.2.2.6.1.6)

2: value is transmitted by float

MC Float type JULD JULD_STATUS

600
AET

101011,
101012,
101014,
101015,
101013,
100001,
101017,

Ascent End Time without clock
offset applied (3.2.2.6.1.7)

2: value is transmitted by float

JULD_ADJUSTED JULD_ADJUSTED_STATUS

Ascent End Time with clock
offset applied (3.2.2.6.1.7)

2: value is transmitted by float

50

Argo data management Argo DAC Cookbook

101018,
101019

MC Float type JULD JULD_STATUS

700
TST

101011,
101012,
101014,
101015,
101013,
100001,
101017,
101018,
101019

Transmission Start Time without
clock offset applied (3.2.2.6.1.8)

2: value is transmitted by float

JULD_ADJUSTED JULD_ADJUSTED_STATUS

Transmission Start Time with
clock offset applied (3.2.2.6.1.8)

2: value is transmitted by float

MC Float type JULD JULD_STATUS

800
TET

101011,
101012,
101014,
101015,
101013,
100001,
101017,
101018,
101019

Fill value 9: not immediately know, but believe
value can be estimated later

JULD_ADJUSTED JULD_ADJUSTED_STATUS

Fill value 9: not immediately know, but believe
value can be estimated later

3.2.2.6.2 Timed events for PROVOR 102002, 102003 and 102004 versions

3.2.2.6.2.1 Descent Start Time

The hours and minutes of the DST are provided, in the technical message, by the technical parameter

"descent start time".

In the N_CYCLE array, the value should be stored in the JULD_DESCENT_START variable and the

JULD_DESCENT_START_STATUS set to 2. If the float clock offset has been estimated and applied,

make sure to fill in the CLOCK_OFFSET (N_CYCLE) variable so users know it has been applied.

3.2.2.6.2.2 First Stabilization Time

The hours and minutes of the FST are provided, in the technical message, by the technical parameter

"float First Stabilization Time".

The associated pressure (in bars) is also provided, in the technical message, by the technical

parameter "float stabilization pressure" (except for PROVOR 102004 version).

In the N_CYCLE array, the stabilization value should be stored in the

JULD_FIRST_STABILIZATION variable and the JULD_FIRST_STABILIZATION_STATUS set to

2. If the float clock offset has been estimated and applied, make sure to fill in the CLOCK_OFFSET

(N_CYCLE) variable so users know it has been applied.

3.2.2.6.2.3 Park Start Time

The hours and minutes of the PST are provided, in the technical message, by the technical parameter

"end of descent time".

In the N_CYCLE array, the value should be stored in the JULD_PARK_START variable and the

JULD_PARK_START_STATUS set to 2. If the float clock offset has been estimated and applied,

make sure to fill in the CLOCK_OFFSET (N_CYCLE) variable so users know it has been applied.

3.2.2.6.2.4 Park End Time

The hours and minutes of the PET are provided, in the technical message, by the technical parameter

"profile descent start time".

51

Argo data management Argo DAC Cookbook

In the N_CYCLE array, the value should be stored in the JULD_PARK_END variable and the

JULD_PARK_END_STATUS set to 2. If the float clock offset has been estimated and applied, make

sure to fill in the CLOCK_OFFSET (N_CYCLE) variable so users know it has been applied.

3.2.2.6.2.5 Deep Park Start Time

The hours and minutes of the DPST are provided, in the technical message, by the technical parameter

"profile descent stop time".

In the N_CYCLE array, the value should be stored in the JULD_DEEP_PARK_START variable and

the JULD_DEEP_PARK_START_STATUS set to 2. If the float clock offset has been estimated and

applied, make sure to fill in the CLOCK_OFFSET (N_CYCLE) variable so users know it has been

applied.

3.2.2.6.2.6 Ascent Start Time

The hours and minutes of the AST are provided, in the technical message, by the technical parameter

"profile ascent start time".

In the N_CYCLE array, the corresponding number should be stored in the JULD_ASCENT_START

variable and the JULD_ASCENT_END_STATUS set to 2. If the float clock offset has been estimated

and applied, make sure to fill in the CLOCK_OFFSET (N_CYCLE) variable so users know it has

been applied.

3.2.2.6.2.7 Ascent End Time

The AET is deduced from TST by the following relation: AET = TST - 14 minutes

In the N_CYCLE array, the corresponding sum should be stored in the JULD_ASCENT_END

variable and the JULD_ASCENT_END_STATUS set to 2. If the float clock offset has been estimated

and applied, make sure to fill in the CLOCK_OFFSET (N_CYCLE) variable so users know it has

been applied.

3.2.2.6.2.8 Transmission Start Time

The hours and minutes of the TST are provided, in the technical message, by the technical parameter

"time at end of ascent".

In the N_CYCLE array, the value should be stored in the JULD_TRANSMISSION_START variable

and the JULD_TRANSMISSION_START_STATUS set to 2. If the float clock offset has been

estimated and applied, make sure to fill in the CLOCK_OFFSET (N_CYCLE) variable so users know

it has been applied.

N_MEASUREMENT Array

PROVOR floats 102002, 102003 and 102004 versions
MC Float type JULD JULD_STATUS

100
DST

102002,
102003,
102004

Descent Start Time without
clock offset applied (3.2.2.6.2.1)

2: value is transmitted by float

JULD_ADJUSTED JULD_ADJUSTED_STATUS

Descent Start Time with clock
offset applied (3.2.2.6.2.1)

2: value is transmitted by float

MC Float type JULD JULD_STATUS

150
FST

102002,
102003,
102004

First Stabilization Time without
clock offset applied (3.2.2.6.2.2)

2: value is transmitted by float

JULD_ADJUSTED JULD_ADJUSTED_STATUS

First Stabilization Time with
clock offset applied (3.2.2.6.2.2)

2: value is transmitted by float

MC Float type JULD JULD_STATUS

250
PST

102002,
102003,
102004

Park Start Time without clock
offset applied (3.2.2.6.2.3)

2: value is transmitted by float

JULD_ADJUSTED JULD_ADJUSTED_STATUS

52

Argo data management Argo DAC Cookbook

Park Start Time with clock offset
applied (3.2.2.6.2.3)

2: value is transmitted by float

MC Float type JULD JULD_STATUS

300
PET

102002,
102003,
102004

Park End Time without clock
offset applied (3.2.2.6.2.4)

2: value is transmitted by float

JULD_ADJUSTED JULD_ADJUSTED_STATUS

Park End Time with clock offset
applied (3.2.2.6.2.4)

2: value is transmitted by float

MC Float type JULD JULD_STATUS

450
DPST

102002,
102003,
102004

Deep Park Start Time without
clock offset applied (3.2.2.6.2.5)

2: value is transmitted by float

JULD_ADJUSTED JULD_ADJUSTED_STATUS

Deep Park Start Time with clock
offset applied (3.2.2.6.2.5)

2: value is transmitted by float

MC Float type JULD JULD_STATUS

500
AST

102002,
102003,
102004

Ascent Start Time without clock
offset applied (3.2.2.6.2.6)

2: value is transmitted by float

JULD_ADJUSTED JULD_ADJUSTED_STATUS

Ascent Start Time with clock
offset applied (3.2.2.6.2.6)

2: value is transmitted by float

MC Float type JULD JULD_STATUS

600
AET

102002,
102003,
102004

Ascent End Time without clock
offset applied (3.2.2.6.2.7

3: value is directly computed from
relevant, transmitted float information

JULD_ADJUSTED JULD_ADJUSTED_STATUS

Ascent End Time with clock
offset applied (3.2.2.6.2.7)

3: value is directly computed from
relevant, transmitted float information

MC Float type JULD JULD_STATUS

700
TST

102002,
102003,
102004

Transmission Start Time without
clock offset applied (3.2.2.6.2.8)

2: value is transmitted by float

JULD_ADJUSTED JULD_ADJUSTED_STATUS

Transmission Start Time with
clock offset applied (3.2.2.6.2.8)

2: value is transmitted by float

MC Float type JULD JULD_STATUS

800
TET

102002,
102003,
102004

Fill value 9: not immediately know, but believe
value can be estimated later

JULD_ADJUSTED JULD_ADJUSTED_STATUS

Fill value 9: not immediately know, but believe
value can be estimated later

3.2.2.6.3 Timed events for PROVOR 101009, 101006, 101008 and 101010 versions

3.2.2.6.3.1 Descent Start Time

The hours and minutes of the DST are provided, in the technical message, by the technical parameter

"descent start time".

In the N_CYCLE array, the value should be stored in the JULD_DESCENT_START variable and the

JULD_DESCENT_START_STATUS set to 2. If the float clock offset has been estimated and applied,

make sure to fill in the CLOCK_OFFSET (N_CYCLE) variable so users know it has been applied.

3.2.2.6.3.2 First Stabilization Time

The hours and minutes of the FST are provided, in the technical message, by the technical parameter

"float First Stabilization Time".

The associated pressure (in bars) is also provided, in the technical message, by the technical

parameter "float stabilization pressure".

In the N_CYCLE array, the stabilization value should be stored in the

JULD_FIRST_STABILIZATION variable and the JULD_FIRST_STABILIZATION_STATUS set to

2. If the float clock offset has been estimated and applied, make sure to fill in the CLOCK_OFFSET

(N_CYCLE) variable so users know it has been applied.

53

Argo data management Argo DAC Cookbook

3.2.2.6.3.3 Park Start Time

The hours and minutes of the PST are provided, in the technical message, by the technical parameter

"end of descent time".

In the N_CYCLE array, the value should be stored in the JULD_PARK_START variable and the

JULD_PARK_START_STATUS set to 2. If the float clock offset has been estimated and applied,

make sure to fill in the CLOCK_OFFSET (N_CYCLE) variable so users know it has been applied.

3.2.2.6.3.4 Park End Time

The PET is deduced from AST by the following relation: PET = AST - DELAI

where DELAI is a programmed meta-data parameter that determines the maximum amount of time

given to the float for diving from PARKING to PROFILE depth.

In the N_CYCLE array, the value should be stored in the JULD_PARK_END variable and the

JULD_PARK_END_STATUS set to 2. If the float clock offset has been estimated and applied, make

sure to fill in the CLOCK_OFFSET (N_CYCLE) variable so users know it has been applied.

3.2.2.6.3.5 Deep Park Start Time

There is no easy way to get this time for this PROVOR float, so fill value should be used.

In the NC_CYCLE array, fill value should be stored in the JULD_DEEP_PARK_START variable and

the JULD_DEEP_PARK_START_STATUS set to 9. If the float clock offset has been estimated and

applied, make sure to fill in the CLOCK_OFFSET (N_CYCLE) variable so users know it has been

applied.

3.2.2.6.3.6 Ascent Start Time

The hours and minutes of the AST are provided, in the technical message, by the technical parameter

"profile ascent start time".

In the N_CYCLE array, the value should be stored in the JULD_ASCENT_START variable and the

JULD_ASCENT_START_STATUS set to 2. If the float clock offset has been estimated and applied,

make sure to fill in the CLOCK_OFFSET (N_CYCLE) variable so users know it has been applied.

3.2.2.6.3.7 Ascent End Time

The AET is deduced from TST by the following relation: AET = TST - 16 minutes

In the N_CYCLE array, the corresponding sum should be stored in the JULD_ASCENT_END

variable and the JULD_ASCENT_END_STATUS set to 2. If the float clock offset has been estimated

and applied, make sure to fill in the CLOCK_OFFSET (N_CYCLE) variable so users know it has

been applied.

3.2.2.6.3.8 Transmission Start Time

The hours and minutes of the TST are provided, in the technical message, by the technical parameter

"time at end of ascent".

In the N_CYCLE array, the value should be stored in the JULD_TRANSMISSION_START variable

and the JULD_TRANSMISSION_START_STATUS set to 2. If the float clock offset has been

estimated and applied, make sure to fill in the CLOCK_OFFSET (N_CYCLE) variable so users know

it has been applied.

54

Argo data management Argo DAC Cookbook

N_MEASUREMENT Array

PROVOR floats 101009, 101006, 101008 and 101010 versions
MC Float type JULD JULD_STATUS

100
DST

101009,
101006,
101008,
101010

Descent Start Time without
clock offset applied (3.2.2.6.3.1)

2: value is transmitted by float

JULD_ADJUSTED JULD_ADJUSTED_STATUS

Descent Start Time with clock
offset applied (3.2.2.6.3.1)

2: value is transmitted by float

MC Float type JULD JULD_STATUS

150
FST

101009,
101006,
101008,
101010

First Stabilization Time without
clock offset applied (3.2.2.6.3.2)

2: value is transmitted by float

JULD_ADJUSTED JULD_ADJUSTED_STATUS

First Stabilization Time with
clock offset applied (3.2.2.6.3.2)

2: value is transmitted by float

MC Float type JULD JULD_STATUS

250
PST

101009,
101006,
101008,
101010

Park Start Time without clock
offset applied (3.2.2.6.3.3)

2: value is transmitted by float

JULD_ADJUSTED JULD_ADJUSTED_STATUS

Park Start Time with clock offset
applied (3.2.2.6.3.3)

2: value is transmitted by float

MC Float type JULD JULD_STATUS

300
PET

101009,
101006,
101008,
101010

Park End Time without clock
offset applied (3.2.2.6.3.4)

3: value is directly computed from
relevant, transmitted float information

JULD_ADJUSTED JULD_ADJUSTED_STATUS

Park End Time with clock offset
applied (3.2.2.6.3.4)

3: value is directly computed from
relevant, transmitted float information

MC Float type JULD JULD_STATUS

450
DPST

101009,
101006,
101008,
101010

Fill value (3.2.2.6.3.5) 9: not immediately know, but believe
value can be estimated later

JULD_ADJUSTED JULD_ADJUSTED_STATUS

Fill value (3.2.2.6.3.5) 9: not immediately know, but believe
value can be estimated later

MC Float type JULD JULD_STATUS

500
AST

101009,
101006,
101008,
101010

Ascent Start Time without clock
offset applied (3.2.2.6.3.6)

2: value is transmitted by float

JULD_ADJUSTED JULD_ADJUSTED_STATUS

Ascent Start Time with clock
offset applied (3.2.2.6.3.6)

2: value is transmitted by float

MC Float type JULD JULD_STATUS

600
AET

101009,
101006,
101008,
101010

Ascent End Time without clock
offset applied (3.2.2.6.3.7)

3: value is directly computed from
relevant, transmitted float information

JULD_ADJUSTED JULD_ADJUSTED_STATUS

Ascent End Time with clock
offset applied (3.2.2.6.3.7)

3: value is directly computed from
relevant, transmitted float information

MC Float type JULD JULD_STATUS

700
TST

101009,
101006,
101008,
101010

Transmission Start Time without
clock offset applied (3.2.2.6.3.8)

2: value is transmitted by float

JULD_ADJUSTED JULD_ADJUSTED_STATUS

Transmission Start Time with
clock offset applied (3.2.2.6.3.8)

2: value is transmitted by float

MC Float type JULD JULD_STATUS

800
TET

101009,
101006,
101008,
101010

Fill value 9: not immediately know, but believe
value can be estimated later

JULD_ADJUSTED JULD_ADJUSTED_STATUS

Fill value 9: not immediately know, but believe
value can be estimated later

3.2.2.6.4 Timed events for PROVOR 100006, 100005, 100004, 100008 and 100003 versions

3.2.2.6.4.1 Descent Start Time

The hours and minutes of the DST are provided, in the technical message, by the technical parameter

"descent start time".

55

Argo data management Argo DAC Cookbook

In the N_CYCLE array, the value should be stored in the JULD_DESCENT_START variable and the

JULD_DESCENT_START_STATUS set to 2. If the float clock offset has been estimated and applied,

make sure to fill in the CLOCK_OFFSET (N_CYCLE) variable so users know it has been applied.

3.2.2.6.4.2 First Stabilization Time

The hours and minutes of the FST are provided, in the technical message, by the technical parameter

"First Stabilization Time".

In the N_CYCLE array, the first stabilization value should be stored in the

JULD_FIRST_STABILIZATION variable and the JULD_FIRST_STABILIZATION_STATUS set to

2. If the float clock offset has been estimated and applied, make sure to fill in the CLOCK_OFFSET

(N_CYCLE) variable so users know it has been applied.

3.2.2.6.4.3 Park Start Time

The hours and minutes of the PST are provided, in the technical message, by the technical parameter

"end of descent time".

In the N_CYCLE array, the value should be stored in the JULD_PARK_START variable and the

JULD_PARK_START_STATUS set to 2. If the float clock offset has been estimated and applied,

make sure to fill in the CLOCK_OFFSET (N_CYCLE) variable so users know it has been applied.

3.2.2.6.4.4 Park End Time

There is no easy way to get this time for this PROVOR float, so fill value should be used.

In the N_CYCLE array, fill value should be stored in the JULD_PARK_END variable and the

JULD_PARK_END_STATUS set to 9. If the float clock offset has been estimated and applied, make

sure to fill in the CLOCK_OFFSET (N_CYCLE) variable so users know it has been applied.

3.2.2.6.4.5 Deep Park Start Time

There is no easy way to get this time for this PROVOR float, so fill value should be used.

Fill value should be stored in the JULD_DEEP_PARK_START variable and the

JULD_DEEP_PARK_START_STATUS set to 9. If the float clock offset has been estimated and

applied, make sure to fill in the CLOCK_OFFSET (N_CYCLE) variable so users know it has been

applied.

3.2.2.6.4.6 Ascent Start Time

There is no easy way to get this time for this PROVOR float, so fill value should be used.

In the N_CYCLE array, fill value should be stored in the JULD_ASCENT_START variable and the

JULD_ASCENT_START_STATUS set to 9. If the float clock offset has been estimated and applied,

make sure to fill in the CLOCK_OFFSET (N_CYCLE) variable so users know it has been applied.

3.2.2.6.4.7 Ascent End Time

The AET is deduced from TST by the following relation: AET = TST - 16 minutes

In the N_CYCLE array, the corresponding sum should be stored in the JULD_ASCENT_END

variable and the JULD_ASCENT_END_STATUS set to 2. If the float clock offset has been estimated

and applied, make sure to fill in the CLOCK_OFFSET (N_CYCLE) variable so users know it has

been applied.

56

Argo data management Argo DAC Cookbook

3.2.2.6.4.8 Transmission Start Time

The hours and minutes of the TST are provided, in the technical message, by the technical parameter

"end of resurfacing time".

In the N_CYCLE array, the value should be stored in the JULD_TRANSMISSION_START variable

and the JULD_TRANSMISSION_START_STATUS set to 2. If the float clock offset has been

estimated and applied, make sure to fill in the CLOCK_OFFSET (N_CYCLE) variable so users know

it has been applied.

N_MEASUREMENT Array

PROVOR floats 100006, 100005, 100004, 100008 and 100003 versions
MC Float type JULD JULD_STATUS

100
DST

100006,
100005,
100004,
100008,
100003

Descent Start Time without
clock offset applied (3.2.2.6.4.1)

2: value is transmitted by float

JULD_ADJUSTED JULD_ADJUSTED_STATUS

Descent Start Time with clock
offset applied (3.2.2.6.4.1)

2: value is transmitted by float

MC Float type JULD JULD_STATUS

150
FST

100006,
100005,
100004,
100008,
100003

First Stabilization Time without
clock offset applied (3.2.2.6.4.2)

2: value is transmitted by float

JULD_ADJUSTED JULD_ADJUSTED_STATUS

First Stabilization Time with
clock offset applied (3.2.2.6.4.2)

2: value is transmitted by float

MC Float type JULD JULD_STATUS

250
PST

100006,
100005,
100004,
100008,
100003

Park Start Time without clock
offset applied (3.2.2.6.4.3)

2: value is transmitted by float

JULD_ADJUSTED JULD_ADJUSTED_STATUS

Park Start Time with clock offset
applied (3.2.2.6.4.3)

2: value is transmitted by float

MC Float type JULD JULD_STATUS

300
PET

100006,
100005,
100004,
100008,
100003

Fill value (3.2.2.6.4.4) 9: not immediately know, but believe
value can be estimated later

JULD_ADJUSTED JULD_ADJUSTED_STATUS

Fill value (3.2.2.6.4.4) 9: not immediately know, but believe
value can be estimated later

MC Float type JULD JULD_STATUS

450
DPST

100006,
100005,
100004,
100008,
100003

Fill value (3.2.2.6.4.5) 9: not immediately know, but believe
value can be estimated later

JULD_ADJUSTED JULD_ADJUSTED_STATUS

Fill value (3.2.2.6.4.5) 9: not immediately know, but believe
value can be estimated later

MC Float type JULD JULD_STATUS

500
AST

100006,
100005,
100004,
100008,
100003

Fill value (3.2.2.6.4.6) 9: not immediately know, but believe
value can be estimated later

JULD_ADJUSTED JULD_ADJUSTED_STATUS

Fill value (3.2.2.6.4.6) 9: not immediately know, but believe
value can be estimated later

MC Float type JULD JULD_STATUS

600
AET

100006,
100005,
100004,
100008,
100003

Ascent End Time without clock
offset applied (3.2.2.6.4.7)

3: value is directly computed from
relevant, transmitted float information

JULD_ADJUSTED JULD_ADJUSTED_STATUS

Ascent End Time with clock
offset applied (3.2.2.6.4.7)

3: value is directly computed from
relevant, transmitted float information

MC Float type JULD JULD_STATUS

700
TST

100006,
100005,
100004,
100008,
100003

Transmission Start Time without
clock offset applied (3.2.2.6.4.8)

2: value is transmitted by float

JULD_ADJUSTED JULD_ADJUSTED_STATUS

Transmission Start Time with
clock offset applied (3.2.2.6.4.8)

2: value is transmitted by float

MC Float type JULD JULD_STATUS

800
TET

100006,
100005,
100004,
100008,
100003

Fill value 9: not immediately know, but believe
value can be estimated later

JULD_ADJUSTED JULD_ADJUSTED_STATUS

Fill value 9: not immediately know, but believe
value can be estimated later

57

Argo data management Argo DAC Cookbook

3.2.2.6.5 Timed events for PROVOR 101007 version

3.2.2.6.5.1 Descent Start Time

The hours and minutes of the DST are provided, in the technical message, by the technical parameter

"heure début de plongée".

In the N_CYCLE array, the value should be stored in the JULD_DESCENT_START variable and the

JULD_DESCENT_START_STATUS set to 2. If the float clock offset has been estimated and applied,

make sure to fill in the CLOCK_OFFSET (N_CYCLE) variable so users know it has been applied.

3.2.2.6.5.2 First Stabilization Time

The hours and minutes of the FST are provided, in the technical message, by the technical parameter

"heure de première stabilisation".

The associated pressure (in bars) is also provided, in the technical message, by the technical

parameter "pression de première stabilisation".

In the N_CYCLE array, the stabilization value should be stored in the

JULD_FIRST_STABILIZATION variable and the JULD_FIRST_STABILIZATION_STATUS set to

2. If the float clock offset has been estimated and applied, make sure to fill in the CLOCK_OFFSET

(N_CYCLE) variable so users know it has been applied.

3.2.2.6.5.3 Park Start Time

The hours and minutes of the PST are provided, in the technical message, by the technical parameter

"heure de fin de descente".

In the N_CYCLE array, the value should be stored in the JULD_PARK_START variable and the

JULD_PARK_START_STATUS set to 2. If the float clock offset has been estimated and applied,

make sure to fill in the CLOCK_OFFSET (N_CYCLE) variable so users know it has been applied.

3.2.2.6.5.4 Park End Time

The PET is deduced from AST by the following relation: PET = AST - DELAI

where DELAI is a programmed meta-data parameter that determines the maximum amount of time

given to the float for diving from PARKING to PROFILE depth.

In the N_CYCLE array, tThe value should be stored in the JULD_PARK_END variable and the

JULD_PARK_END_STATUS set to 2. If the float clock offset has been estimated and applied, make

sure to fill in the CLOCK_OFFSET (N_CYCLE) variable so users know it has been applied.

3.2.2.6.5.5 Deep Park Start Time

There is no easy way to get this time for this PROVOR float, so fill value should be used.

In the N_CYCLE array, fill value should be stored in the JULD_DEEP_PARK_START variable and

the JULD_DEEP_PARK_START_STATUS set to 9. If the float clock offset has been estimated and

applied, make sure to fill in the CLOCK_OFFSET (N_CYCLE) variable so users know it has been

applied.

3.2.2.6.5.6 Ascent Start Time

The hours and minutes of the AST are provided, in the technical message, by the technical parameter

"heure de début profil remontée".

58

Argo data management Argo DAC Cookbook

In the N_CYCLE array, the value should be stored in the JULD_ASCENT_START variable and the

JULD_ASCENT_START_STATUS set to 2. If the float clock offset has been estimated and applied,

make sure to fill in the CLOCK_OFFSET (N_CYCLE) variable so users know it has been applied.

3.2.2.6.5.7 Ascent End Time

The AET is deduced from TST by the following relation: AET = TST - 16 minutes

In the N_CYCLE array, the corresponding sum should be stored in the JULD_ASCENT_END

variable and the JULD_ASCENT_END_STATUS set to 2. If the float clock offset has been estimated

and applied, make sure to fill in the CLOCK_OFFSET (N_CYCLE) variable so users know it has

been applied.

3.2.2.6.5.8 Transmission Start Time

The hours and minutes of the TST are provided, in the technical message, by the technical parameter

"heure de fin de remontée à la surface".

In the N_CYCLE array, the value should be stored in the JULD_TRANSMISSION_START variable

and the JULD_TRANSMISSION_START_STATUS set to 2. If the float clock offset has been

estimated and applied, make sure to fill in the CLOCK_OFFSET (N_CYCLE) variable so users know

it has been applied.

N_MEASUREMENT Array

PROVOR floats 101007 version
MC Float type JULD JULD_STATUS

100
DST

101007

Descent Start Time without
clock offset applied (3.2.2.6.5.1)

2: value is transmitted by float

JULD_ADJUSTED JULD_ADJUSTED_STATUS

Descent Start Time with clock
offset applied (3.2.2.6.5.1)

2: value is transmitted by float

MC Float type JULD JULD_STATUS

150
FST

101007

First Stabilization Time without
clock offset applied (3.2.2.6.5.2)

2: value is transmitted by float

JULD_ADJUSTED JULD_ADJUSTED_STATUS

First Stabilization Time with
clock offset applied (3.2.2.6.5.2)

2: value is transmitted by float

MC Float type JULD JULD_STATUS

250
PST

101007

Park Start Time without clock
offset applied (3.2.2.6.5.3)

2: value is transmitted by float

JULD_ADJUSTED JULD_ADJUSTED_STATUS

Park Start Time with clock offset
applied (3.2.2.6.5.3)

2: value is transmitted by float

MC Float type JULD JULD_STATUS

300
PET

101007

Park End Time without clock
offset applied (3.2.2.6.5.4)

3: value is directly computed from
relevant, transmitted float information

JULD_ADJUSTED JULD_ADJUSTED_STATUS

Park End Time with clock offset
applied (3.2.2.6.5.4)

3: value is directly computed from
relevant, transmitted float information

MC Float type JULD JULD_STATUS

450
DPST

101007

Fill value (3.2.2.6.5.5) 9: not immediately know, but believe
value can be estimated later

JULD_ADJUSTED JULD_ADJUSTED_STATUS

Fill value (3.2.2.6.5.5) 9: not immediately know, but believe
value can be estimated later

MC Float type JULD JULD_STATUS

500
AST

101007

Ascent Start Time without clock
offset applied (3.2.2.6.5.6)

2: value is transmitted by float

JULD_ADJUSTED JULD_ADJUSTED_STATUS

Ascent Start Time with clock
offset applied (3.2.2.6.5.6)

2: value is transmitted by float

MC Float type JULD JULD_STATUS

600
AET

101007

Ascent End Time without clock
offset applied (3.2.2.6.5.7)

3: value is directly computed from
relevant, transmitted float information

JULD_ADJUSTED JULD_ADJUSTED_STATUS

59

Argo data management Argo DAC Cookbook

Ascent End Time with clock
offset applied (3.2.2.6.5.7)

3: value is directly computed from
relevant, transmitted float information

MC Float type JULD JULD_STATUS

700
TST

101007

Transmission Start Time without
clock offset applied (3.2.2.6.5.8)

2: value is transmitted by float

JULD_ADJUSTED JULD_ADJUSTED_STATUS

Transmission Start Time with
clock offset applied (3.2.2.6.5.8)

2: value is transmitted by float

MC Float type JULD JULD_STATUS

800
TET

101007

Fill value 9: not immediately know, but believe
value can be estimated later

JULD_ADJUSTED JULD_ADJUSTED_STATUS

Fill value 9: not immediately know, but believe
value can be estimated later

3.2.2.6.6 Timed events for PROVOR 101002, 101005 and 100002 versions

3.2.2.6.6.1 Descent Start Time

The hours and minutes of the DST are provided, in the technical message, by the technical parameter

"heure début de plongée".

In the N_CYCLE array, the value should be stored in the JULD_DESCENT_START variable and the

JULD_DESCENT_START_STATUS set to 2. If the float clock offset has been estimated and applied,

make sure to fill in the CLOCK_OFFSET (N_CYCLE) variable so users know it has been applied.

3.2.2.6.6.2 First Stabilization Time

The hours and minutes of the FST are provided, in the technical message, by the technical parameter

"heure de première stabilisation".

The associated pressure (in bars) is also provided, in the technical message, by the technical

parameter "pression de première stabilisation". This pressure should go in the PRES variable with an

MC of 150.

In the N_CYCLE array, the stabilization value should be stored in the

JULD_FIRST_STABILIZATION variable and the JULD_FIRST_STABILIZATION_STATUS set to

2. If the float clock offset has been estimated and applied, make sure to fill in the CLOCK_OFFSET

(N_CYCLE) variable so users know it has been applied.

3.2.2.6.6.3 Park Start Time

The hours and minutes of the PST are provided, in the technical message, by the technical parameter

"heure de fin de descente".

In the N_CYCLE array, the value should be stored in the JULD_PARK_START variable and the

JULD_PARK_START_STATUS set to 2. If the float clock offset has been estimated and applied,

make sure to fill in the CLOCK_OFFSET (N_CYCLE) variable so users know it has been applied.

3.2.2.6.6.4 Park End Time

The PET is deduced from AST by the following relation: PET = AST - DELAI

where DELAI is a programmed meta-data parameter that determines the maximum amount of time

given to the float for diving from PARKING to PROFILE depth.

In the N_CYCLE array, the value should be stored in the JULD_PARK_END variable and the

JULD_PARK_END_STATUS set to 2. If the float clock offset has been estimated and applied, make

sure to fill in the CLOCK_OFFSET (N_CYCLE) variable so users know it has been applied.

60

Argo data management Argo DAC Cookbook

3.2.2.6.6.5 Deep Park Start Time

There is no easy way to get this time for this PROVOR float, so fill value should be used.

In the N_CYCLE array, fill value should be stored in the JULD_DEEP_PARK_START variable and

the JULD_DEEP_PARK_START_STATUS set to 9. If the float clock offset has been estimated and

applied, make sure to fill in the CLOCK_OFFSET (N_CYCLE) variable so users know it has been

applied.

3.2.2.6.6.6 Ascent Start Time

The AST is computed from TSD in float time (TSDFT) (i.e. not already corrected from clock offset).

ASTFT = floor((TSDFT - MinProfDuration)*24)/24

where:

 ASTFT is the AST in float time,

 MinProfDuration is the minimum profile duration, given by the latest CTD measurement time

of the profile (these times are relative to ASTFT).

We thus assume that AST is programmed at a given hour (in float time), which is the case.

In the N_CYCLE array, the value should be stored in the JULD_ASCENT_START variable and the

JULD_ASCENT_START_STATUS set to 2. If the float clock offset has been estimated and applied,

make sure to fill in the CLOCK_OFFSET (N_CYCLE) variable so users know it has been applied.

3.2.2.6.6.7 Ascent End Time

The AET is deduced from TST by the following relation: AET = TST - 16 minutes

In the N_CYCLE array, the corresponding sum should be stored in the JULD_ASCENT_END

variable and the JULD_ASCENT_END_STATUS set to 2. If the float clock offset has been estimated

and applied, make sure to fill in the CLOCK_OFFSET (N_CYCLE) variable so users know it has

been applied.

3.2.2.6.6.8 Transmission Start Time

The hours and minutes of the TST are provided, in the technical message, by the technical parameter

"heure de fin de remontée à la surface".

In the N_CYCLE array, the value should be stored in the JULD_TRANSMISSION_START variable

and the JULD_TRANSMISSION_START_STATUS set to 2. If the float clock offset has been

estimated and applied, make sure to fill in the CLOCK_OFFSET (N_CYCLE) variable so users know

it has been applied.

N_MEASUREMENT Array

PROVOR floats 101002, 101005 and 100002 versions
MC Float type JULD JULD_STATUS

100
DST

101002,
101005,
100002

Descent Start Time without
clock offset applied (3.2.2.6.6.1)

2: value is transmitted by float

JULD_ADJUSTED JULD_ADJUSTED_STATUS

Descent Start Time with clock
offset applied (3.2.2.6.6.1)

2: value is transmitted by float

MC Float type JULD JULD_STATUS

150
FST

101002,
101005,
100002

First Stabilization Time without
clock offset applied (3.2.2.6.6.2)

2: value is transmitted by float

JULD_ADJUSTED JULD_ADJUSTED_STATUS

First Stabilization Time with
clock offset applied (3.2.2.6.6.2)

2: value is transmitted by float

61

Argo data management Argo DAC Cookbook

MC Float type JULD JULD_STATUS

250
PST

101002,
101005,
100002

Park Start Time without clock
offset applied (3.2.2.6.6.3)

2: value is transmitted by float

JULD_ADJUSTED JULD_ADJUSTED_STATUS

Park Start Time with clock offset
applied (3.2.2.6.6.3)

2: value is transmitted by float

MC Float type JULD JULD_STATUS

300
PET

101002,
101005,
100002

Park End Time without clock
offset applied (3.2.2.6.6.4)

3: value is directly computed from
relevant, transmitted float information

JULD_ADJUSTED JULD_ADJUSTED_STATUS

Park End Time with clock offset
applied (3.2.2.6.6.4)

3: value is directly computed from
relevant, transmitted float information

MC Float type JULD JULD_STATUS

450
DPST

101002,
101005,
100002

Fill value (3.2.2.6.6.5) 9: not immediately know, but believe
value can be estimated later

JULD_ADJUSTED JULD_ADJUSTED_STATUS

Fill value (3.2.2.6.6.5) 9: not immediately know, but believe
value can be estimated later

MC Float type JULD JULD_STATUS

500
AST

101002,
101005,
100002

Ascent Start Time without clock
offset applied (3.2.2.6.6.6)

3: value is directly computed from
relevant, transmitted float information

JULD_ADJUSTED JULD_ADJUSTED_STATUS

Ascent Start Time with clock
offset applied (3.2.2.6.6.6)

3: value is directly computed from
relevant, transmitted float information

MC Float type JULD JULD_STATUS

600
AET

101002,
101005,
100002

Ascent End Time without clock
offset applied (3.2.2.6.6.7)

3: value is directly computed from
relevant, transmitted float information

JULD_ADJUSTED JULD_ADJUSTED_STATUS

Ascent End Time with clock
offset applied (3.2.2.6.6.7)

3: value is directly computed from
relevant, transmitted float information

MC Float type JULD JULD_STATUS

700
TST

101002,
101005,
100002

Transmission Start Time without
clock offset applied (3.2.2.6.6.8)

2: value is transmitted by float

JULD_ADJUSTED JULD_ADJUSTED_STATUS

Transmission Start Time with
clock offset applied (3.2.2.6.6.8)

2: value is transmitted by float

MC Float type JULD JULD_STATUS

800
TET

101002,
101005,
100002

Fill value 9: not immediately know, but believe
value can be estimated later

JULD_ADJUSTED JULD_ADJUSTED_STATUS

Fill value 9: not immediately know, but believe
value can be estimated later

3.2.2.6.7 Timed events for PROVOR 101003 and 101004 versions

3.2.2.6.7.1 Descent Start Time

The hours and minutes of the Buoyancy Reduction Start Time (BRST) are provided, in the technical

message, by the technical parameter "heure début de plongée".

The Number of Valve Actions at the Surface (NVAS) is provided, in the technical message, by the

technical parameter "nombre d'actions EV en surface".

The DST is computed from BRST and NVAS:

DST = BRST + NVAS*130 seconds

In the N_CYCLE array, the value should be stored in the JULD_DESCENT_START variable and the

JULD_DESCENT_START_STATUS set to 2. If the float clock offset has been estimated and applied,

make sure to fill in the CLOCK_OFFSET (N_CYCLE) variable so users know it has been applied.

62

Argo data management Argo DAC Cookbook

3.2.2.6.7.2 First Stabilization Time

The hours and minutes of the FST are provided, in the technical message, by the technical parameter

"heure de première stabilisation".

The associated pressure (in bars) is also provided, in the technical message, by the technical

parameter "pression de première stabilisation". This pressure should be stored in PRES with an MC

code equal to 150.

In the N_CYCLE array, the stabilization value should be stored in the

JULD_FIRST_STABILIZATION variable and the JULD_FIRST_STABILIZATION_STATUS set to

2. If the float clock offset has been estimated and applied, make sure to fill in the CLOCK_OFFSET

(N_CYCLE) variable so users know it has been applied.

3.2.2.6.7.3 Park Start Time

The hours and minutes of the PST are provided, in the technical message, by the technical parameter

"heure de fin de descente".

In the N_CYCLE array, the value should be stored in the JULD_PARK_START variable and the

JULD_PARK_START_STATUS set to 2. If the float clock offset has been estimated and applied,

make sure to fill in the CLOCK_OFFSET (N_CYCLE) variable so users know it has been applied.

3.2.2.6.7.4 Park End Time

The PET is deduced from AST by the following relation: PET = AST - DELAI

where DELAI is a programmed meta-data parameter that determines the maximum amount of time

given to the float for diving from PARKING to PROFILE depth.

In the N_CYCLE array, the value should be stored in the JULD_PARK_END variable and the

JULD_PARK_END_STATUS set to 2. If the float clock offset has been estimated and applied, make

sure to fill in the CLOCK_OFFSET (N_CYCLE) variable so users know it has been applied.

3.2.2.6.7.5 Deep Park Start Time

There is no easy way to get this time for this PROVOR float, so fill value should be used.

In the N_CYCLE array, fill value should be stored in the JULD_DEEP_PARK_START variable and

the JULD_DEEP_PARK_START_STATUS set to 9. If the float clock offset has been estimated and

applied, make sure to fill in the CLOCK_OFFSET (N_CYCLE) variable so users know it has been

applied.

3.2.2.6.7.6 Ascent Start Time

The AST is computed from TSD in float time (TSDFT) (i.e. not already corrected from clock offset).

ASTFT = floor((TSDFT - MinProfDuration)*24)/24

where:

 ASTFT is the AST in float time,

 MinProfDuration is the minimum profile duration, given by the latest CTD measurement time

of the profile (these times are relative to ASTFT).

We thus assume that AST is programmed at a given hour (in float time), which is the case.

63

Argo data management Argo DAC Cookbook

In the N_CYCLE array, the value should be stored in the JULD_ASCENT_START variable and the

JULD_ASCENT_START_STATUS set to 2. If the float clock offset has been estimated and applied,

make sure to fill in the CLOCK_OFFSET (N_CYCLE) variable so users know it has been applied.

3.2.2.6.7.7 Ascent End Time

The AET is deduced from TST by the following relation: AET = TST - 16 minutes

In the N_CYCLE array, the corresponding sum should be stored in the JULD_ASCENT_END

variable and the JULD_ASCENT_END_STATUS set to 2. If the float clock offset has been estimated

and applied, make sure to fill in the CLOCK_OFFSET (N_CYCLE) variable so users know it has

been applied.

3.2.2.6.7.8 Transmission Start Time

The hours and minutes of the TST are provided, in the technical message, by the technical parameter

"heure de fin de remontée à la surface".

In the N_CYCLE array, the value should be stored in the JULD_TRANSMISSION_START variable

and the JULD_TRANSMISSION_START_STATUS set to 2. If the float clock offset has been

estimated and applied, make sure to fill in the CLOCK_OFFSET (N_CYCLE) variable so users know

it has been applied.

N_MEASUREMENT Array

PROVOR floats 101003 and 101004 versions
MC Float type JULD JULD_STATUS

100
DST

101003 101004

Descent Start Time without
clock offset applied (3.2.2.6.7.1)

3: value is directly computed from
relevant, transmitted float information

JULD_ADJUSTED JULD_ADJUSTED_STATUS

Descent Start Time with clock
offset applied (3.2.2.6.7.1)

3: value is directly computed from
relevant, transmitted float information

MC Float type JULD JULD_STATUS

150
FST

101003 101004

First Stabilization Time without
clock offset applied (3.2.2.6.7.2)

2: value is transmitted by float

JULD_ADJUSTED JULD_ADJUSTED_STATUS

First Stabilization Time with
clock offset applied (3.2.2.6.7.2)

2: value is transmitted by float

MC Float type JULD JULD_STATUS

250
PST

101003 101004

Park Start Time without clock
offset applied (3.2.2.6.7.3)

2: value is transmitted by float

JULD_ADJUSTED JULD_ADJUSTED_STATUS

Park Start Time with clock offset
applied (3.2.2.6.7.3)

2: value is transmitted by float

MC Float type JULD JULD_STATUS

300
PET

101003 101004

Park End Time without clock
offset applied (3.2.2.6.7.4)

3: value is directly computed from
relevant, transmitted float information

JULD_ADJUSTED JULD_ADJUSTED_STATUS

Park End Time with clock offset
applied (3.2.2.6.7.4)

3: value is directly computed from
relevant, transmitted float information

MC Float type JULD JULD_STATUS

450
DPST

101003 101004

Fill value (3.2.2.6.7.5) 9: not immediately know, but believe
value can be estimated later

JULD_ADJUSTED JULD_ADJUSTED_STATUS

Fill value (3.2.2.6.7.5) 9: not immediately know, but believe
value can be estimated later

MC Float type JULD JULD_STATUS

500
AST

101003 101004

Ascent Start Time without clock
offset applied (3.2.2.6.7.6)

3: value is directly computed from
relevant, transmitted float information

JULD_ADJUSTED JULD_ADJUSTED_STATUS

Ascent Start Time with clock
offset applied (3.2.2.6.7.6)

3: value is directly computed from
relevant, transmitted float information

MC Float type JULD JULD_STATUS

600
AET

101003 101004

Ascent End Time without clock
offset applied (3.2.2.6.7.7)

3: value is directly computed from
relevant, transmitted float information

JULD_ADJUSTED JULD_ADJUSTED_STATUS

64

Argo data management Argo DAC Cookbook

Ascent End Time with clock
offset applied (3.2.2.6.7.7)

3: value is directly computed from
relevant, transmitted float information

MC Float type JULD JULD_STATUS

700
TST

101003 101004

Transmission Start Time without
clock offset applied (3.2.2.6.7.8)

2: value is transmitted by float

JULD_ADJUSTED JULD_ADJUSTED_STATUS

Transmission Start Time with
clock offset applied (3.2.2.6.7.8)

2: value is transmitted by float

MC Float type JULD JULD_STATUS

800
TET

101003 101004

Fill value 9: not immediately know, but believe
value can be estimated later

JULD_ADJUSTED JULD_ADJUSTED_STATUS

Fill value 9: not immediately know, but believe
value can be estimated later

3.2.2.6.8 From day, hours and minutes to time

The hours and minutes of the event times are obtained from technical message information.

The associated day can be obtained by the following algorithms.

The day of TST is determined using FMT:

1. Convert FMT in Float Time (FMTFT = FMT + FloatClockDrift),

2. Convert the hours and minutes of FMTFT in Technical Message time (in tenths of and our

after truncation) to obtain FMTFTTM,

3. Compare the resulting FMTFTTM with TST to determine the day of TST (remembering that

FMTFTTM ≥ TST).

The day of AET is determined using TST.

The day of AST is determined using AET and the assumption that: AET-AST < 24 h.

The day of DDET is determined using AST and the assumption that: AST- DDET < 24 h.

The day of PET is determined using DDET and the assumption that: DDET - PET < 24 h.

The day of DST is determined using a Reference Date (RD) which can be:

 For cycle #0: the day of the first descent (meta-data parameter needed for data decoding),

 For a given cycle #N (N > 0):

o If cycle #N-1 exists: RD is the LMT of the cycle #N-1,

o Otherwise, RD is computed from the last received Argos CTD message (LMTCTD):
RD = LMTCTD - CycleDuration.

The obtained RD is then used to determine the day of DST:

1. Convert RD in float time (RDFT = RD + FloatClockDrift),

2. Convert the hours and minutes of RDFT in Technical Message time (in tenths of and our

after truncation) to obtain RDFTTM,

3. Compare the resulting RDFTTM with DST to determine the day of DST (remembering that

RDFTTM ≤ DST).

The day part of FST is determined using DST and the assumption that: FST-DST < 24 h.

The day part of DET is determined using FST and the assumption that: FST-DET < 24 h.

65

Argo data management Argo DAC Cookbook

3.2.2.6.9 Technical time resolution

For PROVOR 102004 version, technical times are given in minutes.

For all other PROVOR float versions, technical times are given in tenths of an hour; moreover they are

resulting from a truncation of raw measurements.

Consequently, for example, an event dated 13:36 by the float occurred in the time interval [13:36 -

13:42[.

To take this characteristic into account and to have a statistical mean estimate of the event time, in the

decoding process we must add 3 minutes to DST, FST, DET, DDET, AET and TST.

Note however that PET and AST should not be modified because they are resulting from float

programmed actions (at a specific hour).

66

Argo data management Argo DAC Cookbook

3.2.2.7 SOLO floats

All cycle times (DST, FST, DET, PST, PET, DDET, DPST, AST, AET, TST, TET) cannot be filled in

real time for SOLO floats and should be filled with fill value. The corresponding status variables for

these timing variables should all be a "9" for time unknown. No times should be filled from

information provided in the meta files.

3.2.2.8 SOLO-II floats

Solo-II floats are all newer, Iridium floats and as such, their cycle timing variables follow a different

chronological order than many of the other floats included in this document. J. Gilson has created a

table from which one can match all the desired measurement codes with what the SOLO-II float

measures, referring back to the float's documentation. The documentation is all available on the SIO-

Argo website (http://sio-argo.ucsd.edu/manuals.html).

Argo program measurement codes (MC)

Code (timing) SOLO II Variable Description Units JULD_STATUS

0 Cy 0: GPS ID=0x00

GPS fix from surfacing after
short ~100dbar test dive

Time,position 1

100 (DST) Cy>0: Fall ID=0x40 First T,P pair [taken as valve
opened to leave surface]

Time,P(0.04db) 2

199

189
190

Cy=0: Eng ID=0xe0

Cy>=0: Fall ID=0x40
Cy>0: Fall ID=0x40

P,T,S triplet taken when float
realizes it is under the surface
and pumps to return to the
surface (Eng ID=0xe0 bytes
41-46)
All pre-DET T,P Fall pairs with
buoyancy adj.
All other pre-DET T,P Fall
pairs

P(0.04db),T(0.001oC),
S(0.001psu)

Time,P(0.04db)

2

2
2

200 (DET) Cy>0: Fall ID=0x40

Choice of T,P pair that is first
within 3% of pressure at
beginning of drift (see Eng
ID=0xe2 bytes 67-68)

Time,P(0.04db) 2

if there is a drift phase (drift pressure defined) (common to cycles > 1)

n=1: 150 (FST)
n>1: 189 or 239

Cy>0: Fall ID=0x40 If n is the number of
stabilizations (see Argo
ID=0xf0), the T,P n+1 from
end of Fall record is a
stabilization. Each later T,P
pair excluding the last will be
an additional stabilization.

Time,P(0.04db) 2

250 (PST) Cy>0: Fall ID=0x40 Last T,P Fall pair Time,P(0.04db) 2

296 Cy>0: Eng ID=0xe2 Drift broken into two
averaged halves. Stored in
Eng ID=0xe2 bytes 67-78;
Time estimated from the last
Fall ID=0x40 T,P pair [note:
not DET] and first Rise
ID=0x50 T,P pair

P(0.04db),T(0.001oC),
S(0.001psu)

2

300 (PET) Cy>0: Rise ID=0x50 First T,P Rise pair [taken as
valve opened]

Time,P(0.04db) 2

301 Best estimate of drift depth
(average of two averaged
halves)

Pressure 1

Endif

if there is a deep dive (profile pressure > drift pressure and drift pressure defined)

389/390 Cy>1: Rise ID=0x50 All pre-DDET T,P Rise pairs
(389 indicates time of
buoyancy adjustedment)

Time,P(0.04db) 2

67

Argo data management Argo DAC Cookbook

400 (DDET) Cy>1: Rise ID=0x50 DDET is determined by a) 2nd
derivative of Rise pair series
or b) within 3% of profile
depth (see Eng ID=0xe2
bytes 39-40).

Time,P(0.04db) 2

489/490 Cy>1: Rise ID=0x50 All post-DDET/pre-AST T,P
Rise pairs (489 indicates time
of buoyancy adjustment)

Time,P(0.04db) 2

500 (AST)

Cy>1: Rise ID=0x50;
Eng ID=0xe2

AST is determined by 2nd
derivative of Rise pair series.
P,T,S triplet taken at start of
ascent (Eng ID=0xe2 bytes
39-44) Note: triplet is
corrupted if float does binning

Time,P(0.04db);
P(0.04db),T(0.001oC),
S(0.001psu)

2

Else

500 (AST) Cy<=1: Rise ID=0x50;
Cy=1 Eng ID=0xe2

First T,P Rise pair [taken as
valve opened]

P,T,S triplet taken at start of
ascent (Eng ID=0xe2 bytes
39-44)

Time,P(0.04db);

P(0.04db),T(0.001oC),
S(0.001psu)

2

Endif

589
590

Cy>-1: Rise ID=0x50
Cy>-1: Rise ID=0x50

All T,P Rise pairs with
buoyancy adjustment
All remaining T,P Rise pairs
post AST excluding last

Time,P(0.04db) 2
2

599 Cy=0: Eng ID=0xe0

Cy>0: Eng ID=0xe2

last P,T,S triplet taken before
turning off CTD (Eng ID=0xe0
bytes 51-56)

last P,T,S triplet taken before
turning off CTD (Eng ID=0xe2
bytes 45-50)

P(0.04db),T(0.001oC),
S(0.001psu)

P(0.04db),T(0.001oC),
S(0.001psu)

2

2

600 (AET) Cy>-1: Rise ID=0x50 Last T,P Rise pair Time,P(0.04db) 2

703 Cy=0: GPS ID=0x00

Cy>0: GPS ID=0x02

GPS Fix

GPS Fix

Time, Position

Time, Position

1

1

700 (TST)
702 (FMT)

Time in SBD email Time of first SBD message Time 1

704 (LMT)
800 (TET)

Time in SBD email Time of last SBD message Time 1

703 Cy>0: GPS ID=0x01 GPS Fix Time, Position 1

68

Argo data management Argo DAC Cookbook

3.3 Guidelines for Argos message selection

3.3.1 Argos float message selection

Ideally, every DAC should use the same method for Argos message selection for each float type.

Some floats are transmitting a CRC (Cyclic Redundancy Check) done onboard the float and others are

not. Additionally, not all CRC have the same reliability. Recommendations were issued at ADMT 10,

but inconsistencies still exist between DACs.

Each float types message selection strategy will be listed below:

Argos message selection done at Coriolis for PROVOR/ARVOR

Technical message selection

1. If only one technical message is received with a good CRC, use it,

2. If more than one technical message is received, all with good CRCs, use the"first received

one"

3. If no technical message is received with a good CRC, no technical message is used. In this

case, times provided by the float are missing and, consequently, the order of the drift CTD

measurements cannot be determined.

CTD data message selection

Received messages are processed by type (type 4: "descent profile CTD message", type 5: "submerged

drift CTD message" and type 6: "ascent profile CTD message").

For each type, the Id of the received message is computed.

 For type 4 or type 6 messages, the Id is defined by the date and the pressure of the first CTD

measurement of the message,

 For type 5 messages, the Id is defined by the date and the time of the first CTD measurement

of the message.

The selection process must lead to (at most) one message for a given Id.

For a given type, all messages of a given Id are processed:

1. If only one message is received with a good CRC, use it,

2. If more than one message is received all with good CRCs, use the "first received one",

3. If no message is received with a good CRC:

a. If 1 or 2 copies of the message has been received, no message is used for this Id,

b. If more than 2 copies of the message have been received:

i. If an even number of copies of the message have been received, reject the

"first received one",

ii. The possibly emitted message is computed from received copies (each bit of

the message is defined by selecting the "most redundant" received one),

iii. A CRC check is done on this "reconstructed" message:

1. If it succeeds, use this "reconstructed" message,

2. If it fails, no message is used for this Id.

69

Argo data management Argo DAC Cookbook

3.4 CTD measurements

3.4.1 CTD measurements sampled during the drift phase at parking depth

3.4.1.1 APEX floats

3.4.1.1.1 CTD measurement sampled at the end of the drift phase at parking depth

All APEX float versions provide a CTD measurement (P, T and S) sampled at the end of the drift

phase at parking depth, generally called park (or bottom) measurement. The corresponding time of the

measurement is provided by Iridium float versions only.

This measurement should be associated to PET (MC 300) or AST (MC 500) if theoretical PARKING

and PROFILE depths are equal for the corresponding cycle (see §3.2.2.1.5).

3.4.1.1.2 CTD measurements regularly sampled during the drift phase at parking depth

Some APEX float versions (see Annex G) provide CTD measurements (only P and T generally)

regularly sampled during the drift phase at parking depth. The corresponding times of the

measurements are provided by Iridium float versions only.

For regularly sampled CTD measurements, use MC minus 10. Usually this will be 290 because the

float is transitioning towards PET which is 300. If the float is transitioning towards a different MC,

subtract four from that MC.

For averaged sampled CTD measurements, use MC minus 4. Usually this will be 296 because the float

is transitioning towards PET which is 300. If the float is transitioning towards a different MC, subtract

four from that MC.

For Argos float versions these measurements need to be dated in a post-processing procedure. For that

we need to know additional meta-data parameters.

The following six sampled strategies can be encountered.

3.4.1.1.2.1 Normal float behavior

For most of the APEX floats, the first CTD measurement is sampled 8 hours after DST (is this really

DST?) and the following ones with a programmed theoretical period.

Thus, for these floats, to compute the CTD measurement times we must first know:

 The DST (see §0),

 The theoretical period of the drift measurements.

3.4.1.1.2.2 Floats with daily CTD measurements

Some APEX floats provide a daily measurement, the first one sampled 24 hours after DST.

3.4.1.1.2.3 Floats providing only averaged values

Some floats provide N averages of hourly sampled CTD measurements. N is a programmed meta-data

parameter.

The times of the averaged value should be computed to be regularly set between DET and PET.

The time of the average #i should be: time(i) = DET + (2*i - 1)*(PET - DET)/(2*N)

70

Argo data management Argo DAC Cookbook

3.4.1.1.2.4 Isopycnal floats behavior

Isopycnal APEX floats generally provide two sets of CTD measurements.

The first one corresponds to the stabilization at the target sigma-theta value.

The first CTD measurement is sampled 6 hours after DST and the following ones with a 1.5 hour

period.

See §3.4.2.3 for the storage of these data.

The second set of CTD measurements corresponds to the drift at the target sigma-theta value.

The first CTD measurement is sampled 6 hours after the last measurement of the first set and the

following ones with a 6 hour period.

These are series of measurements, so the MC should be MC-10.

3.4.1.1.2.5 Old versions of isopycnal floats

Some (old) versions of isopycnal floats provide CTD measurement sampled at isopycnal depth but we

do not know how to compute their corresponding times.

3.4.1.1.2.6 RAFOS floats behavior

RAFOS floats generally provide a daily CTD measurement sampled at the end of the last listening

window of the day.

Thus, for these floats, to compute the CTD measurement times we must first know:

 The hour of the last listening window,

 The length of the listening windows.

The decoded and dated (if possible) CTD measurements should be stored in the N_MEASUREMENT

arrays with:

 JULD set to the computed times,

 JULD_QC: set to 0,

 JULD_STATUS set to 3 (computed directly from information sent by the float)

 CYCLE_NUMBER set to corresponding cycle number,

 MEASUREMENT_CODE set to 290,

 <PARAM> set to decoded CTD values,

 <PARAM>_QCs set to 0,

 All other variables set to _Fillvalue.

For Iridium floats, the decoded times should be corrected for clock offset and stored in the

JULD_ADJUSTED variable. CLOCK_OFFSET should also be filled in the N_CYCLE array.

For Argos floats, the times are computed from DST, thus clock offset is already taken into account.

The times should still be stored in JULD_ADJUSTED since clock offset has been taken into account.

For Argos floats, we must consider missing Argos messages to correctly set CTD measurement dates

(i.e. we must take into account the missing CTD measurements, due to not received data, to correctly

apply the periodicity of the dates).

71

Argo data management Argo DAC Cookbook

3.4.1.2 PROVOR floats

3.4.1.2.1 CTD measurements regularly sampled during the drift phase at parking depth

All PROVOR floats have the capability to achieve and provide CTD measurements (P, T and S)

regularly sampled during the drift phase at parking depth but this capability must be enabled by the

operator in the programmed float mission. Regularly sampled CTD measurements are represented by

the MC towards which the float is transitioning - 10. Usually the float is transitioning towards PET or

300, making the MC code 290.

For PROVOR 100001 version, we have no information, in the transmitted data, about the drift

measurement times.

For PROVOR 100006, 100005, 100004, 100008 and 100003 versions, the time of the first drift

measurement is provided in the technical message as well as the drift data sampling period.

For all other float versions, the time of the first drift measurement of each Argos message (or Iridium

packet) is transmitted in the data message. The day number of this time is relative to the day of the

first descent (cycle #0).

Moreover, for some float versions, to minimize the impact of the loss of a drift CTD message, drift

measurements are transmitted using an interleaving scheme:

 Measurements #1, #3, #5, #7, … are transmitted in a first message,

 Measurements #2, #4, #6, #8, … are transmitted in a second message.

In this case, it is very important to determine the theoretical time of the first drift measurement

(particularly when this measurement is not received from the float).

This time depends on float version.

3.4.1.2.1.1 Drift measurement times determination for PROVOR 101011, 102002, 101012,
101014, 101015, 102003, 101013 and 100001 versions

For these float versions, measurements are done at round hours.

The theoretical First Drift Measurement Time (FDMT) is relative to the hour of the DET (which must

be rounded down).

If DET is given as a Julian day.

If DSP is the Drift Sampling Period (in hours).

Then FDMT = floor(DET*24)/24 + DSP/24.

For PROVOR 101011, 101012, 101014, 101015 and 101013 versions, drift measurements are

transmitted using an interleaving scheme.

This is not the case for PROVOR 102002, 102003 and 100001 versions.

3.4.1.2.1.2 Drift measurement times determination for PROVOR 101009, 101006, 101008,
101007, 101010, 101002, 101005, 101003, 101004 and 100002 versions

For these float versions, the theoretical First Drift Measurement Time (FDMT) is relative to the day of

DET.

If DET is given in Gregorian time as "MM/DD/YYYY hh:mm:ss".

72

Argo data management Argo DAC Cookbook

If DSP is the Drift Sampling Period (in hours).

Then FDMT = "MM/DD/YYYY 00:00:00" + N*DSP/24

where N is the minimum integer value for which

"MM/DD/YYYY 00:00:00" + N*DSP/24 > "MM/DD/YYYY hh:mm:ss"

For PROVOR 101009, 101006, 101008, 101007, 101010, 101002, 101005 and 100002 versions, drift

measurements are transmitted using an interleaving scheme.

This is not the case for PROVOR 101003 and 101004 versions.

73

Argo data management Argo DAC Cookbook

3.4.1.3 NINJA floats

3.4.1.3.1 CTD measurements for NINJA 300001, 300002 and 300003 versions

3.4.1.3.1.1 CTD measurement sampled at the beginning and end of the drift phase at parking
depth

These NINJA versions provide a pressure measurement sampled at the beginning and at the end of the

parking phase.

The first pressure should be stored in the N_MEASUREMENT array in association with DET (thus

with a MEASUREMENT_CODE set to 200).

The second pressure should be stored in the N_MEASUREMENT with a MEASUREMENT_CODE

set to 300 for PET.

Don't know yet if we can compute PET for NINJA floats (see §3.2.2.4.1.4).

3.4.1.3.1.2 CTD measurements regularly sampled during the drift phase at parking depth

These NINJA versions provide pressure measurements daily sampled during the drift phase at parking

depth.

These pressure measurements should be stored in the N_MEASUREMENT with a

MEASUREMENT_CODE set to 290 if the float is transitioning towards PET. Even though we don't

know how to compute the time for these measurements, they can be included in the

N_MEASUREMENT array with the appropriate MC code.

We don't know how to compute the time for these measurements. It depends on the measurement

strategy (punctual measurement at a given hour in a day or averaged value of all the measurements

sampled during the day).

What is the strategy used to generate the daily pressure measurements provided by these floats?

3.4.1.3.2 CTD measurements for NINJA 300004 version

These NINJA versions provide CTD measurements (P, T and S) sampled during the drift phase at

parking depth.

These CTD measurements should be stored in the N_MEASUREMENT with a

MEASUREMENT_CODE set to 290 if transitioning towards PET.

Is it possible (and how) to compute the times of the CTD measurements provided by these floats?

74

Argo data management Argo DAC Cookbook

3.4.1.4 SOLO-II and SOLO floats

Measurement
code

SOLO II
Variable

Description Units

296 Cy>0: Eng
ID=0xe2

The drift is broken into two averaged halves. Stored in Eng
ID=0xe2 bytes 67-78; Time estimated from the last Fall
ID=0x40 T,P pair [note: not DET] and first Rise ID=0x50 T,P
pair

P(0.04db),T(0.001oC),
S(0.001psu)

SOLO floats perform the same drift measurements as SOLO-II floats. Use MC=296 for the two drift

measurements reported by the SOLO.

75

Argo data management Argo DAC Cookbook

3.4.2 Miscellaneous CTD measurements

3.4.2.1 Stabilization CTD measurements

3.4.2.1.1 PROVOR floats

All PROVOR versions provide the First Stabilization Time but only some of them provide the

associated pressure (in bars).

Detailed information can be found in paragraphs 3.2.2.6.1.2, 3.2.2.6.2.2, 3.2.2.6.3.2, 3.2.2.6.4.2,

3.2.2.6.5.2, 3.2.2.6.6.2 and 3.2.2.6.7.2.

3.4.2.1.2 NINJA floats

Some NINJA versions provide three First Stabilization Times with the associated pressures (see

§3.2.2.4.1.2).

The three First Stabilization Times and pressures should be stored in the N_MEASUREMENT arrays

with the MEASUREMENT_CODE set to 150 for the first stabilization and 189 for the second and

third stabilizations.

3.4.2.2 APEX descending pressure marks

Some APEX float versions (see Annex G) provide pressure marks hourly sampled during descent from

the surface to the PARKING depth. These can be assigned MC = 190.

3.4.2.2.1 APEX Argos floats

For APEX Argos floats, these descending pressure marks are provided in the Auxiliary Engineering

Data.

The first measurement is done at the end of the piston retraction, thus at DST, the following are done

with a 1 hour period.

Note also that the descending pressure marks are in bars.

For APF9 APEX floats, it appears to be DST plus one hour. Here is a real example:

(Jun 12 2012 22:19:36, 15 sec) DescentInit() Surface pressure: -0.1dbar. IER: 0x00

(Jun 12 2012 22:19:41, 20 sec) PistonMoveAbsWTO() 226->066 225 224 223 222 221 220 219

218 217 216 215 214 213 212 211 210 209 208 207 206 205 204 203 202 201 200 199 198 197 196

195 194 193 192 191 190 189 188 187 186 185 184 183 182 181 180 179 178 177 176 175 174 173

172 171 170 169 168 167 166 165 164 163 162 161 160 159 158 157 156 155 154 153 152 151 150

149 148 147 146 145 144 143 142 141 140 139 138 137 136 135 134 133 132 131 130 129 128 127

126 125 124 123 122 121 120 119 118 117 116 115 114 113 112 111 110 109 108 107 106 105 104

103 102 101 100 099 098 097 096 095 094 093 092 091 090 089 088 087 086 085 084 083 082 081

080 079 078 077 076 075 074 073 072 071 070 069 068 067 066 [873sec, 13.4Volts, 0.314Amps,

CPT:873sec]

(Jun 12 2012 22:34:16, 895 sec) Descent() Pressure: 3.5

(Jun 12 2012 22:34:17, 896 sec) SetAlarm() Success: itimer=896 sec, ialarm=3600 sec

(Jun 12 2012 23:19:23, 3602 sec) Apf9Init() Wake-up initiated by interval-timer alarm signal.

(Jun 12 2012 23:19:26, 3604 sec) Descent() Pressure: 282.1

76

Argo data management Argo DAC Cookbook

What is the time of the first descent pressure mark of the APF9a floats? The end of the piston

retraction corresponds to TET, DST or another time?

The pressure mark times are computed from DST (already corrected forclock offset); thus they do not

need to be corrected for clock offset but the information should be set.

The descending pressure marks are not always transmitted (depending on the remaining space in the

last Argos message) but if received, the decoded and dated pressures should be stored in the

N_MEASUREMENT arrays with:

 JULD or JULD_ADJUSTED, if clock offset has been applied, set to the computed times,

 JULD_QC: set to 0,

 JULD_STATUS set to 2

 CYCLE_NUMBER set to corresponding cycle number,

 MEASUREMENT_CODE set to 190,

 PRES set to decoded pressure mark values,

 PRES:resolution should be deleted (see §1.2.2)

 PRES_QCs set to 0,

 All other variables set to _Fillvalue.

3.4.2.2.2 APEX Iridium floats

For APEX Iridium floats, the descending pressure marks and the associated times can be retrieved

from log file as the pressure values and the times of the events:

Descent() Pressure: XX.X

Descent() Pressure: YYY.Y

…

Descent() Pressure: ZZZ.Z

associated with the concerned cycle.

The pressure mark times should be first corrected from clock offset, then stored in the

N_MEASUREMENT arrays with:

 JULD set to the retrieved dates or JULD_ADJUSTED if clock offset has been applied,

 JULD_QC/JULD_ADJUSTED_QC: set to 0,

 JULD_STATUS/JULD_ADJUSTED_STATUS set to 2,

 CYCLE_NUMBER set to corresponding cycle number,

 MEASUREMENT_CODE set to 190,

 PRES set to retrieved pressure mark values,

 PRES:resolution should be deleted (see §1.2.2)

 PRES_QCs set to 0,

 All other variables set to _Fillvalue.

3.4.2.3 APEX isopycnal pre-stabilization measurements

Isopycnal APEX floats generally provide a set of CTD measurements sampled just before the

stabilization at the target sigma-theta value.

The first CTD measurement is sampled 6 hours after DST and the following ones with a 1.5 hour

period.

77

Argo data management Argo DAC Cookbook

The decoded and dated CTD measurements should be stored in the N_MEASUREMENT arrays with:

 JULD set to the computed times of JULD_ADJUSTED if clock offset has been applied,

 JULD_QC/JULD_ADJUSTED_QC: set to 0,

 JULD_STATUS/JULD_ADJUSTED_STATUS set to 2,

 CYCLE_NUMBER set to corresponding cycle number,

 MEASUREMENT_CODE set to 189,

 <PARAM> set to decoded CTD values,

 <PARAM>_QCs set to 0,

 All other variables set to _Fillvalue.

For Iridium floats, the decoded times should be corrected for clock offset.

For Argos floats, the dates are computed from DST, thus clock offset is already taken into account.

For Argos floats, we must consider missing Argos messages to correctly set CTD measurement times

(i.e. we must take into account the missing CTD measurements, due to not received data, to correctly

apply the periodicity of the times).

3.4.2.4 Dated bins of descending/ascending profiles

3.4.2.4.1 PROVOR floats

PROVOR float transmits profile data through specific Argos messages (or Iridium packets). Only the

first CTD measurement of each Argos message is transmitted with its associated time. Thus, after

decoding, because of the interleaving scheme used to pack the profile bin measurements, some profiles

bins (around one over four or five, depending of the PROVOR version) are dated.

The dated bins of the descending (or ascending) profiles should be stored in the N_MEASUREMENT

arrays (CTD measurements and associated times) with a MEASUREMENT_CODE set to 190 or 590.

3.4.2.4.2 NINJA floats

Some NINJA versions provide time information recorded during the ascent phase.

The transmitted data consist of the elapsed time for each vertical slice of ascent (from the max

pressure to 2000 dbar for the first slice; and for each 100 dbar thick other slices until the surface).

These times can be used to (roughly) compute the time of one bin each 100 dbar.

The obtained dated bins of the ascending profiles should be stored in the N_MEASUREMENT arrays

(CTD measurements and associated time) with a MEASUREMENT_CODE set to 590.

3.4.2.4.3 SOLO-II floats

SOLO-II floats provide timed pressure measurements on descent and ascent. The dated pressures of

both the descending and ascending profiles should be stored in the N_MEASUREMENT arrays (CTD

measurements and associated times) with a measurement code set to 190 for descending and 590 for

ascending.

3.4.2.5 Deepest descending/ascending CTD measurements

The profile CTD measurements are stored in the PROF file. However, a copy of the deepest bin CTD

measurements should be stored in the TRAJ file.

The deepest bin CTD measurements of a descending profile should be stored in the

N_MEASUREMENT arrays with a MEASUREMENT_CODE set to 203.

78

Argo data management Argo DAC Cookbook

The deepest bin CTD measurements of an ascending profile should be stored in the

N_MEASUREMENT arrays with a MEASUREMENT_CODE set to 503.

3.4.2.6 Min/max pressure during drift at PARKING depth

Some APEX and PROVOR float versions provide the minimum and maximum values of the pressure

regularly sampled during the drift at PARKING depth.

These values should be stored in the N_MEASUREMENT arrays with a MEASUREMENT_CODE

set to 297 or 298.

For PROVOR floats these values are given in bars, the pressure resolution should be set accordingly

(see §1.2.2).

3.4.2.7 Max pressure during descent to PARKING depth

Some PROVOR float versions provide the maximum pressure experienced by the float during the

descent to PARKING depth. This value is given in bars, the pressure resolution should be set

accordingly (see §1.2.2).

This pressure should be stored in the N_MEASUREMENT arrays with the MEASUREMENT_CODE

set to 198.

3.4.2.8 Min/max pressure during drift at PROFILE depth

Some PROVOR float versions provide the minimum and maximum values of the pressure regularly

sampled during the drift at PROFILE depth.

These values should be stored in the N_MEASUREMENT arrays with a MEASUREMENT_CODE

set to 497 and 498.

These values are given in bars, the pressure resolution should be set accordingly (see §1.2.2).

3.4.2.9 Max pressure during descent to PROFILE depth

Some PROVOR float versions provide the maximum pressure experienced by the float during the

descent to PROFILE depth. This value is given in bars, the pressure resolution should be set

accordingly (see §1.2.2).

This pressure should be stored in the N_MEASUREMENT arrays with the MEASUREMENT_CODE

set to 398.

3.4.2.10 Max pressure of the cycle

Some NINJA float versions provide the maximum pressure experienced by the float during the cycle.

This pressure should be stored in the N_MEASUREMENT arrays with the MEASUREMENT_CODE

set to 498.

3.4.2.11 PROVOR Iridium spy data

Some PROVOR Iridium versions provide pressure values (in bars) versus time sampled during the

three vertical phases of the cycle (from surface to PARKING depth, from PARKING depth to

PROFILE depth and from PROFILE depth to surface).

These dated pressure measurements should be stored in the N_MEASUREMENT arrays with a

MEASUREMENT_CODE set to 189 or 389 or 589 depending on the phase.

79

Argo data management Argo DAC Cookbook

3.4.3 REPRESENTATIVE_PARK_PRESSURE

The REPRESENTATIVE_PARK_PRESSURE and

REPRESENTATIVE_PARK_PRESSURE_STATUS variables in the N_CYCLE array are to include

one pressure value for the drift period of the current cycle. These values can be filled in real time, but

should be confirmed/updated in delayed mode. The STATUS flags are clear as to how the value is

calculated and should be done for each float. Flag '1' involves finding a weighted average of regularly

sampled pressures during drift (MC = 290). Flag '2' is the mean value directly provided by the floats of

pressure measurements regularly sampled during drift (MC = 296). Flag '3' is the median value,

directly provided by the float of pressure measurement regularly sampled during drift. Flag '4' is the

pressure measured at PET. Flag '5' is the average of the min and max pressure measurements sampled

during drift (MCs = 297 and 298). Flag '6' and '7' is the PARKING_PRESSURE meta-data value for

floats that for some reason either missed the pressure measurement ('6') or do not make pressure

measurements ('7') during drift. Flag '8' is the value estimated in Delayed Mode from float

behavior/data. This may include profile limits, data from other cycles, temperature at drift, etc.

As an example here is the algorithm used to compute the RPP for ANDRO files:

The RPP is computed for each cycle and depends on the measurements sampled during the drift phase

at parking depth. We start from the most reliable RPP (STEP #1) and, if the needed data are not

present, we try the next step and so on until the last step (STEP #).

STEP #1:

If we have isopycnal pre-stabilization CTD measurements and CTD measurement regularly sampled

during the drift phase at parking depth: the RPP is the average value weighted by the time (thus with a

weigth of 1.5 for the pre-stabilization CTD measurements and 6 for the other ones).

STEP #2:

If we have CTD measurement regularly sampled during the drift phase at parking depth: the RPP is the

average value of these measurements (note that the measurement done at PET which is generally also

present is not used in this case).

STEP #3:

If we directly have the mean value of (generally hourly) regularly sampled CTD measurements: the

RPP is this mean value (note that the measurement done at PET which is generally also present is not

used in this case).

STEP #4:

If we directly have the median value of regularly sampled CTD measurements: the RPP is this median

value.

STEP #5:

If we have a CTD measurement done at PET: the RPP is this measurement.

STEP #6:

If we have the Min and Max pressure values of the measurements done during the drift phase at

parking depth: the RPP is the mean of this two values.

80

Argo data management Argo DAC Cookbook

STEP #7:

If we have multiple profiles during the cycle: the RPP is the average of mean and max profile values,

weighted by the time spent in profile and in drift between profiles (this case is specific to APEX

BOUNCE cycles).

STEP #8:

If we have the PARKING_PRESSURE meta-data value: the RPP is this value.

3.5 GROUNDED Flags

The updated GROUNDED flags can be found in Reference table 20 in the Users Manual. Here is how

they should be applied both in real time (RT) and delayed mode (DM).

Y in RT: float reports it is grounded

Y in DM: DM operator decides float is grounded due to a bathymetry check or understanding of the

float's behavior

N in RT: float reports it is not grounded

N in DM: DM operator decides float is not grounded due to a bathymetry check or understanding of

the float's behavior

B in RT: float is grounded based on real time check with outside bathymetry database

S in RT or DM: float is known to be drifting at a shallower depth than originally programmed

U in RT: unknown

81

Argo data management Argo DAC Cookbook

4 ANNEX A: Some definitions

Here are some definitions about elements mentioned in this document, if some of them remain unclear,

please ask for a new or updated definition (margo@ucsd.edu, msupport@argo.net).

4.1 Definitions of Argos raw data contents

The following definitions can be found in the Argos User's manual (http://www.argos-

system.org/manual/).

Let us consider Argos raw data provided in a PRV/DS command output format.

Argos float messages are collected by a given satellite during a satellite pass. A header of the satellite

pass (in underlined bold in the two following examples) is added to the data by CLS.

In this header, one can find:

 The number of lines of data relative to the satellite pass header (including the header line),

 The name of the satellite,

 If a location has been computed from the data collected during the satellite pass (example 2):

o The location class of the location,

o The date of the location,

o The latitude and longitude of the location.

The Argos float messages, collected during the satellite pass, follow the header.

For each we find:

 The Argos message date (time of reception of the message by the satellite),

 The Argos message redundancy,

 The Argos message content.

Example 1: A satellite pass without Argos location.

02412 63706 17 31 L

2007-04-24 02:40:16 2 64 A2 56 BA

B2 3C 8D 7C

AF 9F 85 AD

72 ED D5 4E

65 09 F7 5D

5C 1E B9 52

D0 CE AA 61

9A 30 00

2007-04-24 02:40:58 1 67 09 D5 CB

5F 31 75 7C

23 8D 3D 82

73 AA 30 8E

5C 46 A1 C7

68 D0 F9 91

D9 60 B9 7E

EB 38 00

Example 2: A satellite pass with Argos location.

02412 63706 33 31 D 2 2007-04-24 05:30:15 -32.189 11.405 0.000 401651871

2007-04-24 05:27:35 1 51 C9 1B A6

F4 0B 5B 5F

2E 83 F4 7F

DF E0 E4 06

mailto:margo@ucsd.edu
mailto:msupport@argo.net
http://www.argos-system.org/manual/
http://www.argos-system.org/manual/

82

Argo data management Argo DAC Cookbook

1F 99 80 1E

94 6A 80 FD

FE 10 39 1E

A7 F4 00

2007-04-24 05:30:15 1 05 08 16 92

0F 83 AE 18

40 20 90 0A

20 00 19 9E

04 15 A6 00

0C 39 05 85

89 01 8E 04

C9 68 20

2007-04-24 05:30:52 1 58 A3 7D 66

F4 8B 16 DF

33 00 00 00

00 00 00 00

00 00 00 00

00 00 00 00

00 00 00 00

00 00 00

2007-04-24 05:32:55 1 69 F5 58 B9

28 72 27 88

72 A5 59 91

54 B5 B4 2A

95 02 43 52

A8 49 2A 5C

E9 DD 4C F7

62 00 00

4.2 Cyclic Redundancy Check

All Argos floats (except SIO SOLO) have an error detection code imbedded in their Argos messages.

Checking this code, called Cyclic Redundancy Check (CRC), can theoretically enhance the reliability

of the data by rejecting messages possibly corrupted by transmission error.

4.3 Float clock drift and clock offset

Some Argo float versions provide times for dated events or dated measurements. Over time, the float's

clock may drift. Clock drift can be defined as the drift of the clock in hours/ minutes/ seconds per year.

To correct for this, we must apply a clock offset where clock offset is defined as a measurement, done

at a given time, of the offset of the clock due to clock drift. Thus a clock offset should be estimated for

each of these float times.

Note that, in this document, float clock offset can also embrace a clock that has not been correctly set

or a clock that has been set in local time. Of course, in these cases clock offset is not only revealing a

drift of the float clock...

Float clock offset is defined as: Float clock offset = Float time - UTC time.

A good estimate of the clock offset can be obtained when the float transmits its Real Time Clock

(RTC) time in the technical data. It can then be compared to the time from Argos of the corresponding

message to compute a clock offset for all the float times of the concerned cycle.

Unfortunately this is not always the case, some floats do not transmit their RTC time and even if they

do, this RTC time is not always received.

4.4 APEX Argos test/data messages

APEX Argos test messages are transmitted by an APEX float during the six hours period spent at the

surface prior to its first dive. The test message contains programmed mission parameters and technical

data.

83

Argo data management Argo DAC Cookbook

After each deep cycle, APEX floats transmit the collected data in the ARGOS data messages.

4.5 APEX Deep Profile First floats

Some APEX floats are programmed to achieve their first profile shortly after deployment (for

comparison to conventional CTD cast from the ship).

In the Deep Profile First (DPF) cycle the firmware is set to complete the first profile within 24 hours

of deployment. The float descends to park, parks then descends to profiling depth. Then the profile

commences. The duration of park is 5 minutes for Iridium floats and 60 minutes for ARGOS floats.

The DPF also ignores any time of day setting. It is unclear how long the two descents are. Experience

has shown that both the descent time out configuration settings are activated when the float fails to

reach target depths.

4.6 APEX Time Of Day feature

Some APEX floats have the capability to schedule profiles so that the float surfaces at a particular

Time Of Day (TOD).

When the TOD feature is enabled, the float RTC is used to dynamically set the end of the DOWN

TIME period to a (user programmed) number of minutes after midnight.

The time of day feature is ignored by Deep Profile First floats.

4.7 APEX Auxiliary Engineering Data

For some APEX floats, the remaining space of the last Argos data message is filled with Auxiliary

Engineering Data (AED).

The AED are considered to be of lower priority and will never cause an additional Argos data message

to be generated.

84

Argo data management Argo DAC Cookbook

5 ANNEX B: Transmission End Time estimation for an APEX
Argos float

The methods used to estimate TET for an Apex Argos float are all based on the float's theoretical

functioning.

5.1 Apex float theoretical functioning

The core cycle of an APEX float is based on four main parameters as illustrated in Figure 2:

1. DOWN TIME: The time period including the descent and the drift at depth,

2. UP TIME: The time period including the ascent and the drift at surface,

3. PARKING PRESSURE: The aimed depth for the drift phase,

4. DEEPEST PRESSURE: The aimed depth for the start of the profile (also called PROFILE

PRESSURE in the document).

The float can also be programmed to achieve a deep profile once over N cycles (in this case, N is

called the Park and Profile parameter).

Finally, the float can also be programmed to achieve its first profile shortly after deployment (for

comparison to conventional CTD cast from the ship).

During its first cycle, this Deep Profile First (DPF) float directly descends to the PROFILE

PRESSURE and immediately achieves its first profile.

DOWN TIME

UP TIME

 Surface

PROFILE PRESSURE

PARKING PRESSURE

Figure 2: Main parameters of an APEX cycle

Figure 3: Example of programmed mission with a PnP parameter of 2 (deep profile every
second cycle)

85

Argo data management Argo DAC Cookbook

5.2 The Park et al. method

The Park et al. method is based on the assumption that the Apex Argos float always starts to profile at

the end of the DOWN TIME. Unfortunately, this is only the case for floats when PARKING and

PROFILE pressures are equal.

The float starts its descent to PROFILE PRESSURE 6 hours before the end of the DOWN TIME.

The float then starts to profile when one of the following conditions is met:

 If the PROFILE PRESSURE depth is reached,

 If the end of the DOWN TIME period is reached.

Note that the second assumption is only true for floats without Time Of Day (TOD) capability or with

the TOD feature disabled.

In the first case, the PROFILE depth can be reached before the end of the DOWN TIME period

implying an arrival at the surface earlier than for the theoretical case (under the assumption of a

constant ascent rate), see next figure.

After such a cycle, if it reached the surface before the end of the DOWN TIME period, the float

increases the value of its profile piston position count to decrease its descent rate from PARKING

depth to PROFILE depth for the next cycle.

DOWN TIME

UP TIME

6 hours

Figure 4: Schematics of a cycle where PARKING and PROFILE pressures differ

86

Argo data management Argo DAC Cookbook

In the second case, at the end of the DOWN TIME, the float has not necessarily reached the PROFILE

depth implying an arrival at the surface earlier than for the theoretical case but later than for the first

case (under the assumption of a constant ascent rate), see next Figure.

After such a cycle, the float decreases the value of its profile piston position count to increase its

descent rate from PARKING depth to PROFILE depth for the next cycle.

This behavior produces continual variation of AETs; 2 main values can roughly be distinguished as

illustrated in the next figure.

DOWN TIME

UP TIME

6 hours

DOWN TIME

UP TIME

6 hours

Figure 5: First case, PROFILE depth reached before end of the DOWN TIME period

Figure 6: Second case, PROFILE depth not reached before end of DOWN TIME period

87

Argo data management Argo DAC Cookbook

Figure 7: Example of behaviour of a float which drift and profile at different depths

In this figure, we can see on the left part the times and on the right part the pressures of the CTD

measurements.

The times are drawn in reference to cycle #0. For a given cycle, we can find, in chronological order:

the AET (pink circle), the TST (light blue dot), the FMT (red dot), the location times (blue dots), the

LMT (red dot) and the TET (light blue dot).

We clearly see 2 sets of AETs: the first one around 21/08/2007 14:16:00 and the second one around

21/08/2007 18:14:00 (in reference to cycle #0).

The pressures of the CTD measurements are drawn in blue dots for the profile measured pressures

and in red dots for the Representative Parking Pressure (RPP) pressures. The black dots represent the

local bathymetry provided by the ETOPO2 atlas.

We see that this float (WMO #7900177) has drift around 1000 dbar and profiled from 1300 dbar.

More detailed information can be found in the Kobayashi and Nakajima paper.

In the DEP data set, only 22.5% (i.e. 806 floats) of the 3622 APEX Argos floats drift and profile at the

same depth and are then eligible for the Park et al. method.

Consequently, we decided to forget this method and to specify another one applicable to all APEX

Argos floats.

5.3 The proposed method

The proposed method is based on two algorithms that can be alternatively used, depending of the

number of cycles available for a given float.

88

Argo data management Argo DAC Cookbook

The first algorithm uses half of the Park et al. method to determine the maximum envelope of the

LMTs.

The second algorithm also estimates TETs but takes into account the drift of the float clock.

These algorithms are based on the durations of the APEX Argos cycles which are always known

CYCLE TIME = DOWN TIME + UP TIME.

We cannot say that these durations are constant but we can say that their theoretical values are known

(i.e. predictable).

In the ANDRO data set, these cycle durations vary only for two float versions:

 For APEX bounce floats: bounce cycle (even numbered cycles) duration is smaller than usual

cycle (odd numbered cycles) duration (but both theoretical values are known),

 For APEX "seasonal" floats: the cycle duration is two (known) values depending of the day in

the year (concerned versions are 001046 and 001055).

5.3.1 First algorithm: Transmission End Times estimated from the maximum envelope
of the Last Message Times

The maximum envelope of the LMTs is a lower bound of the TET as illustrated in the following

figure.

The first algorithm is the following:

1. Identify the reference cycle (number N).

The reference cycle is the first received cycle.

For DPF floats however the reference cycle can't be cycle #0 it is then the first received

cycle with a number > 0.

2. Compute the reference value of the LMT of each cycle (LMTRV).
For cycle #i:

LMTRV(i) = LMT(i) - duration(N, i)

Where duration(N, i) is the theoretical duration between cycle #N and cycle #i.

If the cycle theoretical duration is constant and equal to CYCLE TIME (all floats except
bounce and "seasonal" ones) duration(N, i) = (i - N)*CYCLE TIME and then

LMTRV(i) = LMT(i) - (i - N)*CYCLE TIME
3. Find the maximum value of the obtained LMTRV(i) values.

4. Compute the TET of each cycle.
TET(i) = max(LMTRV) + duration(N, i)

Here again if the cycle theoretical duration is constant we obtain

TET(i) = max(LMTRV) + (i - N)*CYCLE TIME

Note that for DPF floats we can choose to set TET equal to LMT for cycle #0 (i.e. for DPF floats:

TET(0) = LMT(0)).

89

Argo data management Argo DAC Cookbook

Figure 9 and Figure 10 show the TETs of float #6900740 estimated by the maximum envelope of the

LMT of the current

cycle

Estimated value of the

TET
DOWN TIME + UP TIME

Cycle #1

DOWN TIME + UP TIME

Cycle #2

DOWN TIME + UP TIME

Cycle #3

Real value of the TET

DOWN TIME + UP TIME

Cycle #4

Maximum envelope of

the LMTs

Figure 8: Estimation of the TETs from the maximum envelope of the LMTs

90

Argo data management Argo DAC Cookbook

Figure 9: Example of estimation of TETs with the maximum envelope of the LMTs

Figure 10: A zoom of the previous figure shows that estimated TETs are defined by the LMT of
cycle #13

91

Argo data management Argo DAC Cookbook

5.3.2 Second algorithm: Transmission End Times estimated by a method that takes the
float clock offset into account

The TETs obtained so far have been estimated under the assumption that the theoretical CYCLE

TIME value is the real duration of the cycles.

However, the onboard float clock can drift during float life implying variations of the cycle durations.

Figure 11: Example of a rather important negative clock drift (estimated to - 00:13:59 per year
which implies a maximum difference of 00:58:34 between TETs estimated with or without
taking the clock drift into account). We clearly see a regular decrease of cycle duration.

Figure 12: Example of a rather important positive clock drift (estimated to + 00:17:15 per year
which implies a maximum difference of 00:58:56 between TETs estimated with or without
taking the clock drift into account). We clearly see a regular increase of cycle duration.

The proposed algorithm can also take into account erroneous theoretical CYCLE TIME values.

92

Argo data management Argo DAC Cookbook

Figure 13: Example of an erroneous theoretical cycle time (DOWN TIME + UP TIME = 228 + 22 =
240 hours whereas the cycle time is around 244 hours) seen as a very important positive clock
drift (estimated to + 147:44:36 per year which implies a maximum difference of 209:26:54
between TETs estimated with or without taking the clock drift into account).

In the second algorithm we linearly estimate the float clock offset to take it into account in the TETs

estimation.

The algorithm stands in six steps illustrated in the following paragraphs.

Figure 14: Example of TETs estimated with the maximum envelope of the LMTs (first
algorithm), we want to estimate the TETs taking into account the float clock offset.

93

Argo data management Argo DAC Cookbook

5.3.2.1 Step #1

First determine the convex envelope of the LMTs.

This can be done by various algorithms; the one we used is not presented here.

Is it worth pasting the ~50 lines of matlab code here or in a specific Annex?

Next, obtain a subset of the LMTs (the base points) that define the convex envelope of all the LMTs as

illustrated in the next figure.

Figure 15: The convex envelope of the LMTs (green line) defined by the base points (green
circles)

5.3.2.2 Step #2

The second step consists in setting a point on the convex envelope for all received cycles.

We thus obtain a set of points on the convex envelope.

94

Argo data management Argo DAC Cookbook

Figure 16: The 111 received cycles are set on the convex envelope (blue circles)

5.3.2.3 Step #3

The third step consists in deleting some first and last points on the convex envelope.

2/5 of the points on the convex envelope are deleted: the first 1/5 of the point and the last 1/5 of the

points.

Figure 17: The first and last 22 points are ignored (only the 67 central points are preserved)

5.3.2.4 Step #4

The fourth step consists in linearly fitting the points on the convex envelope (in a least squares sense).

We used the "polyfit" Matlab function to do that.

The slope of the resulting line is our estimated clock offset.

95

Argo data management Argo DAC Cookbook

Figure 18: The blue circles are linearly fitted (red line)

5.3.2.5 Step #5

The fifth step consists of adjusting the estimated clock offset on the convex envelope.

Obviously, the contact point(s) is(are) base point(s), thus we try each base point of the convex

envelope.

Figure 19: The red line is adjusted on the convex envelope

5.3.2.6 Step #6

For each received cycle, we compute the estimated TETs situated on the adjusted line of estimated

clock offset.

96

Argo data management Argo DAC Cookbook

Figure 20: Estimated TETs with (red points on the red line) or without (light blue points on the
light blue line) taking float clock drift into account. In this example, clock drift is estimated to -
00:00:55 per year which implies a maximum difference of 00:03:19 between the red and the
light blue lines

5.3.3 Final improvement: taking the cycle duration anomalies into account

Some Apex floats have experienced anomalies in their cycle duration, an example is provided in next

figure.

These floats have been processed by slices.

A new slice is defined for each set of cycles with a constant cycle duration. Each slice is then

processed with the proposed method.

This is also the way we have processed DPF floats. We created a first slice with cycle #0 and a second

one with all the other cycles (see Figure 22).

Within the 3622 APEX Argos floats of the ANDRO data set, 777 floats have been processed by slices:

717 floats only because they are DPF floats and 60 floats because they have cycle duration anomalies.

97

Argo data management Argo DAC Cookbook

Figure 21: Example of a cycle duration anomaly (cycle #100 duration is 250 hours whereas
others cycles have the expected duration i.e. 240 hours)

Figure 22: Example of DPF float, the first profile is a deep profile (whereas with a PnP
parameter of 4, it should otherwise be a shallow profile) and the first cycle is shorter than the
other ones

98

Argo data management Argo DAC Cookbook

5.3.4 Results obtained in the ANDRO data set

For the processing of the ANDRO data set we have chosen to estimate the float clock offset only if we

have more than 20 points to fit in step #4; thus only if we have received at least 33 cycles for the float.

The estimated TETs of the 3622 floats have then been visually checked and the following parameter

modifications done:

 The estimation using the second algorithm has been cancelled for 53 floats (i.e. we use the

first algorithm results even if more than 33 cycles has been received). In most of these cases,

bad results are due to too few cycles used in the estimate of the clock offset (between 21 and

~40),

 For 191 floats, the process needed additional customization (modification of the number of

deleted points in step #3).

Thus we are convinced that the proposed method is robust enough to be implemented in real time

(except for cycle duration anomalies which can only be detected by visual inspection).

Some Apex float versions provide the time of the end of the DOWN TIME period. We have estimated

the float clock offset from these times and successfully compared it with the one obtained by the

second algorithm.

Thus we are convinced that the second algorithm method is reliable for TETs estimation.

Most of the estimated clock offsets are in the [-00:10:00; +00:10:00] interval (the [-00:2:30;

+00:00:30] interval for new floats) and they imply corrections of less than 80 minutes.

5.3.5 Recommended method for real time processing

To estimate the TETs of an APEX Argos float you need to know:

 Its theoretical CYCLE TIME duration(s),

 If the float is a DPF float.

If we think that clock offset can be neglected for real time processing, we recommend using only

the first algorithm.

If not, we recommend using both algorithms:

 First algorithm when we have received less than 33 cycles from the float,

 Second algorithm when we have received at least 33 cycles from the float.

When using the second algorithm, if the absolute value of the estimated clock offset is greater than

00:20:00 per year, we must be sure that the float is not a DPF one; otherwise the float has probably

experienced a cycle duration anomaly and the TETs should not be estimated in real time (neither by

the first nor by the second algorithm).

The value 33 should be discussed.

99

Argo data management Argo DAC Cookbook

6 ANNEX C: Computing Transmission Start Time for and APEX
Argos float

The number of Argos messages needed to transmit the data collected at depth can vary between cycles

(it mainly depends on profile length).

Starting when the float arrives at the surface, these M Argos messages are transmitted sequentially

(from #1 to #M) and repeatedly until the end of the UP TIME period.

If a complete set of the M message is called a block of data, thus B blocks of M messages are

transmitted.

Note however that the last block is not necessarily complete (because the transmission stops at the end

of the UP TIME, not at the end of a block).

All Argos messages are numbered. Moreover, message #1 gives the block number.

Since all messages received by the ARGOS satellite are dated, we get the times of transmission of the

messages received and their numbers.

From messages #1, we get also the block numbers to which they belong.

6.1 Teledyne Webb Research proposed method

This method is explained in the APEX user's manual and illustrated in the following figure.

If at least one message #1 is received, its corresponding block number (BN) can be determined.

The number of transmitted messages since TST is then: (BN-1)*M and

Beginning of Argos

transmission (TST)

UP TIME

message #3

of bloc #4

bloc #2

Transmitted messages

Received messages

message #1

of bloc #5

TST = (date of message #1 bloc #5) – [(5-1) * M * RepRate]

RepRate : Argos PTT period

Figure 23: Teledyne Webb Research method to compute TST for an APEX Argos float

100

Argo data management Argo DAC Cookbook

TST = (Argos time of received message #1) - [(BN-1)*M*RepRate]

where RepRate is the period of the float Argos PTT.

This method thus implies:

 To receive at least one message #1,

 To know the period of the Argos PTT (RepRate),

 To know the total number of transmitted Argos messages (M).

The RepRate parameter is a meta-data variable, thus possibly erroneous (it can however be checked

from received message times).

The M value can sometimes be difficult to compute. Each float format must be carefully studied; M

can be computed from the variable parts of the Argos messages (i.e. profile length but also to the

number of PTS measurement sampled during the drift phase).

6.2 An improved proposed method

To get rid of the M value determination, a second method can be used, as illustrated in the following

figure.

If at least two messages #1 (dated T1 and T2 respectively) belonging to two different blocks (BN1

and BN2 respectively) are received, the transmission duration of a block can be determined:

Transmission Duration of one Block =BTD = (T2 - T1)/(BN2 - BN1)

But BTD = M*RepRate, then

Beginning of Argos

transmission (TST)

 UP TIME

message #3

of bloc #4

bloc #2

Transmitted messages

message #1

of bloc #5

BTD = Block Transmission Duration = [(date of message #1 bloc #5) – (date of message #1 bloc #2)]/(5-2)

message #1

of bloc #2

3 BTD

1 BTD

Received messages

Figure 24: An improved method to compute TST for an APEX Argos float

101

Argo data management Argo DAC Cookbook

TST = T1 - [(BN1-1)*BTD] or TST = T2 - [(BN2-1)*BTD]

The following strategy is then suggested:

1. If at least two messages belonging to two different blocks are received, use the improved

method.

In this case all (in fact at most 100) values of TST are computed (from all combinations of
Ti and Tj messages #1 received) and the most redundant result is chosen for TST.

At the beginning of our work, we started to compute all the values of TST but in case of

shallow profiles (or no profile at all when the float stays at the surface) i.e. when the M

value is only 1 or 2 and then B value is very important, the method doesn't work (the

histogram of TST computed values has many redundant values and the most redundant

one can be inconsistent). We have not understood why (it can be an interesting question

for TWR) but we think this is due to inconsistencies in the transmitted data, we thus

decided to compute "only" 100 values of the TST and to choose the most redundant value.

2. If only one message #1 is received, the TWR method is used with the assumption
(sometimes erroneous) that M is equal to the maximal number of the received Argos

messages (i.e. that the last Argos message has been received).

102

Argo data management Argo DAC Cookbook

7 ANNEX D: Apex float vertical velocities

7.1 APEX float descending velocity

To estimate the descending APEX Argos velocity, 463 APEX floats which provide pressure marks

hourly sampled during the descent to PARKING depth were analyzed.

At most 7 pressure marks are transmitted by the floats. Thus, at most 6 averaged hourly descent rates

were computed (remember that the first pressure mark is sampled at the end of the piston retraction,

thus it is not dated and useless for this estimation), and a global averaged descent rate for the 6 first

hours of the descent.

The mean descent rate depends on the float PARKING pressure; the averages for 5 parking depths

(250 dbar, 500 dbar, 1000 dbar, 1500 dbar and 2000 dbar) were computed. The RPP has been used to

associate a descent rate to the corresponding depth.

Figure 25: Mean hourly descent rates of APEX Argos floats. For each PARKING pressure the 6
mean hourly descent rates (dots) and the global mean descent rate of the 6 first hours of the
descent (triangle) are shown.

103

Argo data management Argo DAC Cookbook

The following table gives the number of samples used to compute the averages.

1

st
 hour 2

nd
 hour 3

rd
 hour 4

th
 hour 5

th
 hour 6

th
 hour Global

250 dbar 373 333 250 208 155 86 1 405

500 dbar 580 549 526 471 345 197 2 668

1000 dbar 15 010 14 852 14 762 14 646 8 762 3 827 71 859

1500 dbar 389 144 141 119 91 52 936

2000 dbar 2 114 2 105 2 091 2 059 2 040 1 981 12 390

Table 3: Number of samples used to compute mean descent rates

The global mean descent rate values are provided in the following table.

PARKING depth 250 dbar 500 dbar 1000 dbar 1500 dbar 2000 dbar

Mean descent rate (cm.s
-1

) 2.64 3.55 5.91 12.37 8.95

Associated standard
deviation

1.87 2.54 1.23 3.02 1.25

Table 4: Global mean descent rate values

7.2 APEX float ascending velocity

To estimate the ascending APEX Argos velocity, the two following data samples were used:

 The 298 APEX floats which provide the ASTfloat and TSTfloat (thus AETfloat) (see §3.2.2.1.7.2

and 3.2.2.1.9.2),

 The 1497 APEX floats for which the following are available:

o The AST, estimated as TET - UP TIME for cycles where PARKING and PROFILE

pressure are equal (see §3.2.2.1.7.1)

o The AET, computed from TST obtained with the method explained in Annex C (see

§6.2)

The data of the first set are more reliable because they are measured and transmitted by the floats

(whereas the data of the second set come from estimations).

To compute a mean ascent rate, a reliable deepest profile pressure value is needed. For that, it is

important that the Argos message of the first (deepest) profile bin PTS measurement has been

received. This information can be provided by the APEX Argos decoders.

As this information was not stored in the DEP data set, only profiles for which the following is true

could be used:

| deepest bin pressure - PROFILE pressure | < 150 dbar.

(these data are in green in the following figures).

If | deepest bin pressure - PROFILE pressure | > 150 dbar, the cycle can be flagged "grounded" (blue

stars) or not (red stars).

104

Argo data management Argo DAC Cookbook

Figure 26: Ascent rates computed from measured data

Figure 27: Ascent rates computed from estimated data

In the first figure, the green stars can be linearly fitted by the Y = 0.00017*X + 9.3 function.

105

Argo data management Argo DAC Cookbook

In the second figure, the green stars can be linearly fitted by the Y = 0.00081*X + 8.3 function.

Thus the mean ascent rate is around 9.5 cm/s in the first case and between 9.0 and 10 cm/s in the

second case.

Therefore, it is recommended to use a mean ascent rate of 9.5 cm/s for APEX Argos floats.

106

Argo data management Argo DAC Cookbook

8 ANNEX E: Input parameters

Most of the specifications given in this document need input parameters. These parameters are part of

the values used to program the float mission.

Unfortunately these values can be difficult to collect; some of them are transmitted by the instrument

(in APEX float test message or PROVOR/APEX Iridium technical message) but the others can only

be found in float operator notes.

It is thus important to ask each float PI to collect the programmed float parameters and to send them to

the concerned DAC.

Some input parameters, gathered in the framework of the ANDRO project, are joined in electronic

form to this document.

In the Excel file CorrectedMetadata.xlsx you can find, for the 5967 ANDRO floats, the corrected

meta-data values for:

 Float PTT,

 All existing float missions:

A mission is defined by:

o Its repetition rate,

o Its duration, given by:

 The UP_TIME and DOWN_TIME period for APEX floats,

 The CYLE_TIME for other floats.

o Its parking pressure,

o Its profile pressure,

 The float launch time and position,

 The startup time of the float.

In the Excel file _provor_floats_information.xls, you can find the corrected meta-data values used to

decode the PROVOR Argos floats.

You can find in particular:

 The DELAI parameter values (maximum amount of time given to the float for diving from

PARKING to PROFILE depth),

 The reference day ("day of the first descent") used to decode the transmitted times.

In the Excel file DPDP_values.xlsx, you can find the decoded values of the "Deep profile descent

period" transmitted in the test message by some version of APEX floats.

107

Argo data management Argo DAC Cookbook

9 ANNEX F: Measurement code table

9.1 General Measurement Code Table Key

Measurement code type Definition
Any code evenly divisible by 100 (e.g.
100, 200, 300, etc)

Primary Measurement Codes (MC). Each marks a mandatory-to-fill cycle
timing variable. These are very important for determining trajectory
estimates. All are found in both the N_MEASUREMENT and N_CYCLE data
arrays.

Any code evenly divisible by 50 but not
evenly divisible by 100 (e.g. 150, 250,
450, etc)

Secondary Measurement Codes (MC). Each marks a suggested-to-fill
cycle timing variable. Secondary MC are not always applicable to all floats, but
are very useful in determining trajectory estimates.

Any code that falls in between any
Primary or Secondary Measurement
Code (span of 50 values). These codes
describe data that are important cycle
timing information but are not as
important as the primary or secondary
timing variables.

The value span is subdivided into two
halves. Measurement codes in this
section will be described relative to the
values of the Primary and Secondary
codes.

Relative Generic Codes. Values spanning from MC minus 24 to MC minus
1: Measurement codes that have lower value and within 24 of a Primary or
Secondary Measurement Code. These code definitions are phrased generally,
so can be attached to data from many different floats. These code values (MC
minus 24 to MC minus 1) are assigned when a float records a measurement
while transitioning TOWARDS the MC. The definitions of the MC from MC
minus 24 to MC minus 1 are repeated for all Primary and Secondary MC. An
example, most floats record pressure/temperature/salinity during drift. The
float is transitioning towards PET (MC=300) during this period. Thus the
pressure/temperature/salinity measurements will have an MC between MC
minus 24 and MC minus 1 where MC=300 (thus between MC=276 and
MC=299). Which value is chosen is determined by the measurement itself
(See table below).

Relative Specific Codes. Values spanning from MC plus 1 to MC plus 25:
These are specific measurements that are generally NOT recorded by multiple
float types. They are believed to be valuable enough in trajectory estimation
that they are defined here, and not within the generically defined MC minus
24 to MC minus 1 span. MC codes in this span will be specific to the MC code,
and will NOT be repeated for other Primary and Secondary MCs. An example,
APEX floats report the “Down-time end date”, which is important in
determining the start of ascent (MC=500). The MC for “Down-time end date”
is recorded with MC plus 1 (MC=501).

9.2 Relative Generic Code Table Key (from MC minus 24 to MC minus 1)

This table pertains to any measurement code that has lower value and within 24 of a Primary or

Secondary Measurement Code (see below). These definitions apply relative to every Primary and

Secondary code. For example, AST (time of ascent start, MC=500) and AET (time of ascent end,

MC=600) are both Primary MCs. There exists a measurement code MC minus 4 for both AST and

AET which is assigned to any averaged measurement that is taken while transitioning towards the MC.

If an averaged measurement is recorded while transitioning towards AST, the correct MC=496. If an

averaged measurement is recorded while transitioning towards AET, the correct MC=596.

Relative
Measurement
code

Meaning

MC minus 1 Any single measurement transitioning towards MC (see MC-10 for a 'series' of
measurements)

MC minus 2 Maximum value while float is transitioning towards an MC (e.g. pressure)

MC minus 3 Minimum value while float is transitioning towards an MC (e.g. pressure)

MC minus 4 Any averaged measurements made during transition to MC

MC minus 5 Median value while float is transitioning towards an MC

MC minus 6 to MC minus
9

currently unassigned

MC minus 10 Any “series” of measurements recorded while transitioning towards MC. (e.g. Provor 'spy'
measurements, SOLOII pressure-time pairs, etc).

MC minus 11 Active adjustment to buoyancy made at this time

MC minus 12 to MC
minus 24

currently unassigned

108

Argo data management Argo DAC Cookbook

9.3 Measurement Code Table

Measure-
ment
code

Variable Meaning Transmitted by listed
float type. Value can be
estimated in other floats

0 Launch time and location of the float All float types

76-99 see above
table

Any measurement recorded during transition
towards DST

100 DST All measurements made when float leaves
the surface, beginning descent.
Time (JULD_DESCENT_START)

Time: PROVOR, ARVOR, SOLO-
II,
WHOI SOLOIR, NEMO, NEMOIR,
APEX APF9, APEXIR APF9

101-125 unassigned Reserved for specific timing events around DST.

126-149 see above
table

Any measurement recorded during transition
towards FST

150 FST All measurements made at time when a
float first becomes water-neutral.
Time (JULD_FIRST_STABILIZATION)

PROVOR, ARVOR

151-175 unassigned Reserved for specific timing events around FST.

176-199 see above
table

Any measurement recorded during transition
towards DET

200 DET All measurements made at time when
float first approaches within 3% of the
eventual drift pressure. Float may be
transitioning from the surface or from a deep
profile. This variable is based on measured or
estimated pressure only In the case of a float
that overshoots the drift pressure on descent,
DET is the time of the overshoot.
Time (JULD_DESCENT_END)

Time:
PROVOR, ARVOR, SOLO-II,
NEMO, NEMOIR, NAVISAPEX
APF9i?

201-202 & 204-
225

unassigned Reserved for specific timing events around DET.

203 Deepest bin reached during descending profile

226-249 see above
table

Any measurement recorded during transition
towards PST

250 PST All measurements made at time when
float transitions to its Park or Drift
mission. This variable is based on float logic
based on a descent timer (i.e. SOLO), or be
based on measurements of pressure (i.e.
Provor).
Time(JULD_PARK_START)

APEX non APF9, APEX APF9,
APEX APF9i, SIO SOLO, SOLO-
II, NEMO, NEMOIR

CTD:
WHOI SOLO
NINJA

251-275 unassigned Reserved for specific timing events around PST.

276-299 see above
table

Any measurement recorded during transition
towards PET

300 PET All measurements made at time when
float exits from its Park or Drift mission. It
may next rise to the surface (AST) or sink to
profile depth
Time (JULD_PARK_END)

Time:
PROVOR (excluding PROVOR
MT), ARVOR, SOLO-II, NEMO,
NEMOIR, POPS
CTD:
WHOI SOLO

301 Representative Park <PARAM> found either
from measurements taken during drift or from
metafile information

302-325 unassigned Reserved for specific timing events around PET.

376-399 see above
table

Any measurement recorded during transition
towards DDET

400 DDET All measurements made at time when
float first approaches within 3% of the
eventual deep drift/profile pressure. This

Time: PROVOR CTS3, ARVOR,
SOLO-II, POPS

109

Argo data management Argo DAC Cookbook

variable is based on pressure only and can be
measured or estimated.
Time (JULD_DEEP_DESCENT_END)

401-425 unassigned Reserved for specific timing events around
DDET.

426-449 see above
table

Any measurement recorded during transition
towards DPST

450 DPST All measurements made at time when
float transitions to a deep park drift
mission. This variable is only defined if the
float enters a deep drift phase (i.e. DPST not
defined in cases of constant deep pressure due
to bottom hits, or buoyancy issues).

451-475 unassigned Reserved for specific timing events around
DPST.

476-499 see above
table

Any measurement recorded during transition
towards AST

500 AST All measurements made at the start of
the float's ascent to the surface
Time (JULD_ASCENT_START)

Time:
APEX APF9, PROVOR, ARVOR,
SOLO-II, NEMO, NEMOIR, POPS

501 Down-time end time: end date of the down-
time parameter reported by APEX floats

APEX

502 Ascent start time directly transmitted by APEX
floats

APEX

503 Deepest bin reached during ascending profile

504-525 unassigned Reserved for specific timing events around AST.

526-549 see above
table

Any measurement recorded during transition
towards DAST

550 DAST All measurements made at the start of
the float's ascent from profile pressure to
drift pressure. Used for floats that profile on
descent and then move back up to drift
pressure. Time (JULD_DEEP_ASCENT_START)

Time:
 Deep SOLO-II

551-575 unassigned Reserved for specific timing events around
DAST.

576-599 see above
table

Any measurement recorded during transition
towards AET

600 AET All measurements made at the end of
ascent.
Time (JULD_ASCENT_END)

PROVOR, ARVOR, SOLO-II,
NEMO, NEMOIR, APEX, POPS

601-625 unassigned Reserved for specific timing events around AET.

676-699 see above
table

Any measurement recorded during transition
towards TST

700 TST Time and location of the start of
transmission for the float.
Time (JULD_TRANSMISSION_START)

APEX APF9, APEXIR APF9,
PROVOR, ARVOR, SOLO-II,
NEMO, NEMOIR, POPS

701 Transmission start time directly transmitted by
APEX float

APEX

702 FMT Earliest time of all messages received by
telecommunications system – may or may
not have a location fix.
Time (JULD_FIRST_MESSAGE)

All floats

703 Surface times and locations during surface drift.
Should be listed in chronological order.

All floats

704 LMT Latest time of all messages received by
telecommunications system – may or may
not have a location fix.
Time (JULD_LAST_MESSAGE)

All floats

705-725 unassigned Reserved for specific timing events around TST

776-799 see above
table

Any measurement recorded during transition
towards TET

800 TET Time and location of the end of
transmission for the float.
Time (JULD_TRANSMISSION_END)

PROVOR, ARVOR, SOLO-II,
APEXIR APF9

110

Argo data management Argo DAC Cookbook

801-825 unassigned Reserved for specific timing events around TET

901 Grounded flag
Configuration phase

902 Last time before float recovery. For floats that
have been recovered, it is important to know
when this occurred. This time in the JULD array
will be the last time before the float was
recovered. Determined by inspection of data

903 Pressure offset used to correct APEX pressure
measurements

APEX

111

Argo data management Argo DAC Cookbook

10 ANNEX G: Cookbook entry point

Given the large amount of information included in this cookbook and the way it changes for all the

different float types, there needs to be an easy way for DACs to use this cookbook to make

calculations for the trajectory file. This Annex has been created to make it easy for DACs to find out

what calculations are needed based on float version. The Annex consists of tables including all float

versions versus all measurement codes which are needed to fill the trajectory files. This should prevent

against forgetting anything.

In the final version of the cookbook, the cells should be filled:

 By N/A (for Not Applicable) if the concerned data cannot (float capability) be produced from

the given float version,

 Otherwise, the list of paragraphs in the cookbook that explain how to process.

These tables thus provide an overview of all the data expected to be in the TRAJ file for a given float

version and a direct access (through the ability to jump to linked paragraphs (CTRL+Click)) to the

concerned specifications.

10.1 PALACE floats

Format
Id

Code 0
Launch

Code 100
DST

Code 150
FST

Code 200
 DET

Code 250
PST

Code 300
PET

Code 400
DDET

ANDRO
decoder
ID

000001

000002

000003

000004 3.1.1 3.2.2.1.2 N/A 3.2.2.1.3 3.2.2.1.4.1 3.2.2.1.5.1 3.2.2.1.6 APX #1

000005

000006 3.1.1 3.2.2.1.2 N/A 3.2.2.1.3 3.2.2.1.4.1 3.2.2.1.5.1 3.2.2.1.6
APX #55,
APX #71

000007 3.1.1 3.2.2.1.2 N/A 3.2.2.1.3 3.2.2.1.4.1 3.2.2.1.5.1 3.2.2.1.6 APX #2

000008 3.1.1 3.2.2.1.2 N/A 3.2.2.1.3 3.2.2.1.4.1 3.2.2.1.5.1 3.2.2.1.6 APX #78

Format
Id

Code 450
DPST

Code 500
AST

Code 550
DAST

Code 600
AET

Code 700
TST

Codes
702-704
FMT, LMT

Code 800
TET

ANDRO
dec Id

000001

000002

000003

000004 N/A 3.2.2.1.7.1 N/A 3.2.2.1.8.1 3.2.2.1.9.1 3.2.1.1.1 3.2.2.1.1.1 APX #1

000005

000006 N/A 3.2.2.1.7.1 N/A 3.2.2.1.8.1 3.2.2.1.9.1 3.2.1.1.1 3.2.2.1.1.1
APX #55,
APX #71

000007 N/A 3.2.2.1.7.1 N/A 3.2.2.1.8.1 3.2.2.1.9.1 3.2.1.1.1 3.2.2.1.1.1 APX #2

000008 N/A 3.2.2.1.7.1 N/A 3.2.2.1.8.1 3.2.2.1.9.1 3.2.1.1.1 3.2.2.1.1.1 APX #78

112

Argo data management Argo DAC Cookbook

Format
Id

Code 190 Code 290 Code 296 Code 297 Code 298
Code 301
RPP

Code 501
ANDRO
dec Id

000001

000002

000003

000004

3.4.3

APX #1

000005

000006

3.4.3

APX #55,
APX #71

000007

3.4.3

APX #2

000008

3.4.3

APX #78

Format
Id

Code 502 Code 503 Code 701
Code 901
GRND

ANDRO dec Id

000001

000002

000003

000004

3.4.2.5

3.5

APX #1

000005

000006

3.4.2.5

3.5

APX #55, APX #71

000007

3.4.2.5

3.5

APX #2

000008

3.4.2.5

3.5

APX #78

113

Argo data management Argo DAC Cookbook

10.2 APEX floats (format Ids from 001001 to 001025)

Format
Id

Code 0
Launch

Code
100 DST

Code 150
FST

Code 200
DET

Code 250
PST

Code 300
PET

Code 400
DDET

ANDRO
dec Id

001001 3.1.1 3.2.2.1.2 N/A 3.2.2.1.3 3.2.2.1.4.1 3.2.2.1.5.1 3.2.2.1.6 APX #3

001002 3.1.1 3.2.2.1.2 N/A 3.2.2.1.3 3.2.2.1.4.1 3.2.2.1.5.1 3.2.2.1.6 APX #53

001003 3.1.1 3.2.2.1.2 N/A 3.2.2.1.3 3.2.2.1.4.1 3.2.2.1.5.1 3.2.2.1.6 APX #37

001004 3.1.1 3.2.2.1.2 N/A 3.2.2.1.3 3.2.2.1.4.1 3.2.2.1.5.1 3.2.2.1.6 APX #4

001005 3.1.1 3.2.2.1.2 N/A 3.2.2.1.3 3.2.2.1.4.1 3.2.2.1.5.1 3.2.2.1.6 APX #54

001006 3.1.1 3.2.2.1.2 N/A 3.2.2.1.3 3.2.2.1.4.1 3.2.2.1.5.1 3.2.2.1.6 APX #30

001007 3.1.1 3.2.2.1.2 N/A 3.2.2.1.3 3.2.2.1.4.1 3.2.2.1.5.1 3.2.2.1.6 APX #9

001008 3.1.1 3.2.2.1.2 N/A 3.2.2.1.3 3.2.2.1.4.1 3.2.2.1.5.1 3.2.2.1.6 APX #6

001009 3.1.1 3.2.2.1.2 N/A 3.2.2.1.3 3.2.2.1.4.1 3.2.2.1.5.1 3.2.2.1.6 APX #82

001010 3.1.1 3.2.2.1.2 N/A 3.2.2.1.3 3.2.2.1.4.1 3.2.2.1.5.1 3.2.2.1.6 APX #84

001011 3.1.1 3.2.2.1.2 N/A 3.2.2.1.3 3.2.2.1.4.1 3.2.2.1.5.1 3.2.2.1.6 APX #85

001012 3.1.1 3.2.2.1.2 N/A 3.2.2.1.3 3.2.2.1.4.1 3.2.2.1.5.1 3.2.2.1.6 APX #29

001013 3.1.1 3.2.2.1.2 N/A 3.2.2.1.3 3.2.2.1.4.1 3.2.2.1.5.1 3.2.2.1.6 APX #10

001014 3.1.1 3.2.2.1.2 N/A 3.2.2.1.3 3.2.2.1.4.1 3.2.2.1.5.1 3.2.2.1.6 APX #40

001015 3.1.1 3.2.2.1.2 N/A 3.2.2.1.3 3.2.2.1.4.1 3.2.2.1.5.1 3.2.2.1.6 APX #44

001016 3.1.1 3.2.2.1.2 N/A 3.2.2.1.3 3.2.2.1.4.1 3.2.2.1.5.1 3.2.2.1.6 APX #38

001017 3.1.1 3.2.2.1.2 N/A 3.2.2.1.3 3.2.2.1.4.1 3.2.2.1.5.1 3.2.2.1.6 APX #28

001018 3.1.1 3.2.2.1.2 N/A 3.2.2.1.3 3.2.2.1.4.1 3.2.2.1.5.1 3.2.2.1.6 APX #11

001019 3.1.1 3.2.2.1.2 N/A 3.2.2.1.3 3.2.2.1.4.1 3.2.2.1.5.1 3.2.2.1.6 APX #36

001020 3.1.1 3.2.2.1.2 N/A 3.2.2.1.3 3.2.2.1.4.1 3.2.2.1.5.1 3.2.2.1.6 APX #35

001021 3.1.1 3.2.2.1.2 N/A 3.2.2.1.3 3.2.2.1.4.1 3.2.2.1.5.1 3.2.2.1.6 APX #12

001022 3.1.1 3.2.2.1.2 N/A 3.2.2.1.3 3.2.2.1.4.1 3.2.2.1.5.1 3.2.2.1.6 APX #13

001023 3.1.1 3.2.2.1.2 N/A 3.2.2.1.3 3.2.2.1.4.1 3.2.2.1.5.1 3.2.2.1.6 APX #14

001024 3.1.1 3.2.2.1.2 N/A 3.2.2.1.3 3.2.2.1.4.1 3.2.2.1.5.1 3.2.2.1.6 APX #32

001025 3.1.1 3.2.2.1.2 N/A 3.2.2.1.3 3.2.2.1.4.1 3.2.2.1.5.1 3.2.2.1.6 APX #33

114

Argo data management Argo DAC Cookbook

Format
Id

Code 450
DPST

Code 500
AST

Code 550
DAST

Code 600
AET

Code 700
TST

Codes
702-704
FMT, LMT

Code 800
TET

ANDRO
dec Id

001001 N/A 3.2.2.1.7.1 N/A 3.2.2.1.8.1 3.2.2.1.9.1 3.2.1.1.1 3.2.2.1.1.1 APX #3

001002 N/A 3.2.2.1.7.1 N/A 3.2.2.1.8.1 3.2.2.1.9.1 3.2.1.1.1 3.2.2.1.1.1 APX #53

001003 N/A 3.2.2.1.7.1 N/A 3.2.2.1.8.1 3.2.2.1.9.1 3.2.1.1.1 3.2.2.1.1.1 APX #37

001004 N/A 3.2.2.1.7.1 N/A 3.2.2.1.8.1 3.2.2.1.9.1 3.2.1.1.1 3.2.2.1.1.1 APX #4

001005 N/A 3.2.2.1.7.1 N/A 3.2.2.1.8.1 3.2.2.1.9.1 3.2.1.1.1 3.2.2.1.1.1 APX #54

001006 N/A 3.2.2.1.7.1 N/A 3.2.2.1.8.1 3.2.2.1.9.1 3.2.1.1.1 3.2.2.1.1.1 APX #30

001007 N/A 3.2.2.1.7.1 N/A 3.2.2.1.8.1 3.2.2.1.9.1 3.2.1.1.1 3.2.2.1.1.1 APX #9

001008 N/A 3.2.2.1.7.1 N/A 3.2.2.1.8.1 3.2.2.1.9.1 3.2.1.1.1 3.2.2.1.1.1 APX #6

001009 N/A 3.2.2.1.7.1 N/A 3.2.2.1.8.1 3.2.2.1.9.1 3.2.1.1.1 3.2.2.1.1.1 APX #82

001010 N/A 3.2.2.1.7.1 N/A 3.2.2.1.8.1 3.2.2.1.9.1 3.2.1.1.1 3.2.2.1.1.1 APX #84

001011 N/A 3.2.2.1.7.1 N/A 3.2.2.1.8.1 3.2.2.1.9.1 3.2.1.1.1 3.2.2.1.1.1 APX #85

001012 N/A 3.2.2.1.7.1 N/A 3.2.2.1.8.1 3.2.2.1.9.1 3.2.1.1.1 3.2.2.1.1.1 APX #29

001013 N/A 3.2.2.1.7.1 N/A 3.2.2.1.8.1 3.2.2.1.9.1 3.2.1.1.1 3.2.2.1.1.1 APX #10

001014 N/A 3.2.2.1.7.1 N/A 3.2.2.1.8.1 3.2.2.1.9.1 3.2.1.1.1 3.2.2.1.1.1 APX #40

001015 N/A 3.2.2.1.7.1 N/A 3.2.2.1.8.1 3.2.2.1.9.1 3.2.1.1.1 3.2.2.1.1.1 APX #44

001016 N/A 3.2.2.1.7.1 N/A 3.2.2.1.8.1 3.2.2.1.9.1 3.2.1.1.1 3.2.2.1.1.1 APX #38

001017 N/A 3.2.2.1.7.1 N/A 3.2.2.1.8.1 3.2.2.1.9.1 3.2.1.1.1 3.2.2.1.1.1 APX #28

001018 N/A 3.2.2.1.7.1 N/A 3.2.2.1.8.1 3.2.2.1.9.1 3.2.1.1.1 3.2.2.1.1.1 APX #11

001019 N/A 3.2.2.1.7.1 N/A 3.2.2.1.8.1 3.2.2.1.9.1 3.2.1.1.1 3.2.2.1.1.1 APX #36

001020 N/A 3.2.2.1.7.1 N/A 3.2.2.1.8.1 3.2.2.1.9.1 3.2.1.1.1 3.2.2.1.1.1 APX #35

001021 N/A 3.2.2.1.7.1 N/A 3.2.2.1.8.1 3.2.2.1.9.1 3.2.1.1.1 3.2.2.1.1.1 APX #12

001022 N/A 3.2.2.1.7.1 N/A 3.2.2.1.8.1 3.2.2.1.9.1 3.2.1.1.1 3.2.2.1.1.1 APX #13

001023 N/A 3.2.2.1.7.1 N/A 3.2.2.1.8.1 3.2.2.1.9.1 3.2.1.1.1 3.2.2.1.1.1 APX #14

001024 N/A 3.2.2.1.7.1 N/A 3.2.2.1.8.1 3.2.2.1.9.1 3.2.1.1.1 3.2.2.1.1.1 APX #32

001025 N/A 3.2.2.1.7.1 N/A 3.2.2.1.8.1 3.2.2.1.9.1 3.2.1.1.1 3.2.2.1.1.1 APX #33

115

Argo data management Argo DAC Cookbook

Format
Id

Code 190 Code 290 Code 296 Code 297 Code 298
Code 301
RPP

Code 501
ANDRO
dec Id

001001

3.4.3

APX #3

001002

3.4.3

APX #53

001003

3.4.3

APX #37

001004

3.4.3

APX #4

001005

3.4.3

APX #54

001006

3.4.3

APX #30

001007

3.4.3

APX #9

001008

3.4.3

APX #6

001009

3.4.1.1.2

3.4.3

APX #82

001010

3.4.1.1.2

3.4.3

APX #84

001011

3.4.1.1.2

3.4.3

APX #85

001012

3.4.3

APX #29

001013

3.4.3

APX #10

001014

3.4.3

APX #40

001015

3.4.3

APX #44

001016 3.4.2.3 3.4.1.1.2

3.4.3

APX #38

001017

3.4.3

APX #28

001018

3.4.1.1.2

3.4.3

APX #11

001019

3.4.3

APX #36

001020 3.4.2.2.1

3.4.1.1.2.3 3.4.2.6 3.4.2.6 3.4.3 3.2.2.1.7.2 APX #35

001021

3.4.3

APX #12

001022

3.4.1.1.2

3.4.3

APX #13

001023

3.4.1.1.2

3.4.3

APX #14

001024

3.4.3

APX #32

001025

3.4.3

APX #33

116

Argo data management Argo DAC Cookbook

Format
Id

Code 502 Code 503 Code 701
Code 901
GRND

ANDRO
dec Id

001001

3.4.2.5

3.5

APX #3

001002

3.4.2.5

3.5

APX #53

001003

3.4.2.5

3.5

APX #37

001004

3.4.2.5

3.5

APX #4

001005

3.4.2.5

3.5

APX #54

001006

3.4.2.5

3.5

APX #30

001007

3.4.2.5

3.5

APX #9

001008

3.4.2.5

3.5

APX #6

001009

3.4.2.5

3.5

APX #82

001010

3.4.2.5

3.5

APX #84

001011

3.4.2.5

3.5

APX #85

001012

3.4.2.5

3.5

APX #29

001013

3.4.2.5

3.5

APX #10

001014

3.4.2.5

3.5

APX #40

001015

3.4.2.5

3.5

APX #44

001016

3.4.2.5

3.5

APX #38

001017

3.4.2.5

3.5

APX #28

001018

3.4.2.5

3.5

APX #11

001019

3.4.2.5

3.5

APX #36

001020 3.2.2.1.7.2 3.4.2.5 3.2.2.1.9.2 3.5

APX #35

001021

3.4.2.5

3.5

APX #12

001022

3.4.2.5

3.5

APX #13

001023

3.4.2.5

3.5

APX #14

001024

3.4.2.5

3.5

APX #32

001025

3.4.2.5

3.5

APX #33

117

Argo data management Argo DAC Cookbook

10.3 APEX floats (format Ids from 001026 to 001050)

Format
Id

Code 0
Launch

Code 100
DST

Code 150
FST

Code 200
DET

Code 250
PST

Code 300
PET

Code 400
DDET

ANDRO
dec Id

001026 3.1.1 3.2.2.1.2 N/A 3.2.2.1.3 3.2.2.1.4.1 3.2.2.1.5.1 3.2.2.1.6 APX #45

001027

001028 3.1.1 3.2.2.1.2 N/A 3.2.2.1.3 3.2.2.1.4.1 3.2.2.1.5.1 3.2.2.1.6 APX #56

001029 3.1.1 3.2.2.1.2 N/A 3.2.2.1.3 3.2.2.1.4.1 3.2.2.1.5.1 3.2.2.1.6 APX #52

001030 3.1.1 3.2.2.1.2 N/A 3.2.2.1.3 3.2.2.1.4.1 3.2.2.1.5.1 3.2.2.1.6 APX #57

001031 3.1.1 3.2.2.1.2 N/A 3.2.2.1.3 3.2.2.1.4.1 3.2.2.1.5.1 3.2.2.1.6 APX #86

001032 3.1.1 3.2.2.1.2 N/A 3.2.2.1.3 3.2.2.1.4.1 3.2.2.1.5.1 3.2.2.1.6 APX #17

001033 3.1.1 3.2.2.1.2 N/A 3.2.2.1.3 3.2.2.1.4.1 3.2.2.1.5.1 3.2.2.1.6 APX #18

001034 3.1.1 3.2.2.1.2 N/A 3.2.2.1.3 3.2.2.1.4.1 3.2.2.1.5.1 3.2.2.1.6 APX #19

001035 3.1.1 3.2.2.1.2 N/A 3.2.2.1.3 3.2.2.1.4.1 3.2.2.1.5.1 3.2.2.1.6 APX #46

001036 3.1.1 3.2.2.1.2 N/A 3.2.2.1.3 3.2.2.1.4.1 3.2.2.1.5.1 3.2.2.1.6 APX #20

001037 3.1.1 3.2.2.1.2 N/A 3.2.2.1.3 3.2.2.1.4.1 3.2.2.1.5.1 3.2.2.1.6 APX #21

001038 3.1.1 3.2.2.1.2 N/A 3.2.2.1.3 3.2.2.1.4.1 3.2.2.1.5.1 3.2.2.1.6 APX #64

001039 3.1.1 3.2.2.1.2 N/A 3.2.2.1.3 3.2.2.1.4.1 3.2.2.1.5.1 3.2.2.1.6 APX #22

001040 3.1.1 3.2.2.1.2 N/A 3.2.2.1.3 3.2.2.1.4.1 3.2.2.1.5.1 3.2.2.1.6 APX #23

001041 3.1.1 3.2.2.1.2 N/A 3.2.2.1.3 3.2.2.1.4.1 3.2.2.1.5.1 3.2.2.1.6 APX #16

001042 3.1.1 3.2.2.1.2 N/A 3.2.2.1.3 3.2.2.1.4.1 3.2.2.1.5.1 3.2.2.1.6 APX #15

001043 3.1.1 3.2.2.1.2 N/A 3.2.2.1.3 3.2.2.1.4.1 3.2.2.1.5.1 3.2.2.1.6 APX #48

001044 3.1.1 3.2.2.1.2 N/A 3.2.2.1.3 3.2.2.1.4.1 3.2.2.1.5.1 3.2.2.1.6 APX #39

001045 3.1.1 3.2.2.1.2 N/A 3.2.2.1.3 3.2.2.1.4.1 3.2.2.1.5.1 3.2.2.1.6 APX #49

001046 3.1.1 3.2.2.1.2 N/A 3.2.2.1.3 3.2.2.1.4.1 3.2.2.1.5.1 3.2.2.1.6 APX #24

001047 3.1.1 3.2.2.1.2 N/A 3.2.2.1.3 3.2.2.1.4.1 3.2.2.1.5.1 3.2.2.1.6 APX #25

001048 3.1.1 3.2.2.1.2 N/A 3.2.2.1.3 3.2.2.1.4.1 3.2.2.1.5.1 3.2.2.1.6 APX #58

001049 3.1.1 3.2.2.1.2 N/A 3.2.2.1.3 3.2.2.1.4.1 3.2.2.1.5.1 3.2.2.1.6 APX #26

001050 3.1.1 3.2.2.1.2 N/A 3.2.2.1.3 3.2.2.1.4.1 3.2.2.1.5.1 3.2.2.1.6 APX #87

118

Argo data management Argo DAC Cookbook

Format
Id

Code 450
DPST

Code 500
AST

Code 550
DAST

Code 600
AET

Code 700
TST

Codes
702-704
FMT, LMT

Code 800
TET

ANDRO
dec Id

001026 N/A 3.2.2.1.7.1 N/A 3.2.2.1.8.1 3.2.2.1.9.1 3.2.1.1.1 3.2.2.1.1.1 APX #45

001027

001028 N/A 3.2.2.1.7.1 N/A 3.2.2.1.8.1 3.2.2.1.9.1 3.2.1.1.1 3.2.2.1.1.1 APX #56

001029 N/A 3.2.2.1.7.1 N/A 3.2.2.1.8.1 3.2.2.1.9.1 3.2.1.1.1 3.2.2.1.1.1 APX #52

001030 N/A 3.2.2.1.7.1 N/A 3.2.2.1.8.1 3.2.2.1.9.1 3.2.1.1.1 3.2.2.1.1.1 APX #57

001031 N/A 3.2.2.1.7.1 N/A 3.2.2.1.8.1 3.2.2.1.9.1 3.2.1.1.1 3.2.2.1.1.1 APX #86

001032 N/A 3.2.2.1.7.1 N/A 3.2.2.1.8.1 3.2.2.1.9.1 3.2.1.1.1 3.2.2.1.1.1 APX #17

001033 N/A 3.2.2.1.7.1 N/A 3.2.2.1.8.1 3.2.2.1.9.1 3.2.1.1.1 3.2.2.1.1.1 APX #18

001034 N/A 3.2.2.1.7.1 N/A 3.2.2.1.8.1 3.2.2.1.9.1 3.2.1.1.1 3.2.2.1.1.1 APX #19

001035 N/A 3.2.2.1.7.1 N/A 3.2.2.1.8.1 3.2.2.1.9.1 3.2.1.1.1 3.2.2.1.1.1 APX #46

001036 N/A 3.2.2.1.7.1 N/A 3.2.2.1.8.1 3.2.2.1.9.1 3.2.1.1.1 3.2.2.1.1.1 APX #20

001037 N/A 3.2.2.1.7.1 N/A 3.2.2.1.8.1 3.2.2.1.9.1 3.2.1.1.1 3.2.2.1.1.1 APX #21

001038 N/A 3.2.2.1.7.1 N/A 3.2.2.1.8.1 3.2.2.1.9.1 3.2.1.1.1 3.2.2.1.1.1 APX #64

001039 N/A 3.2.2.1.7.1 N/A 3.2.2.1.8.1 3.2.2.1.9.1 3.2.1.1.1 3.2.2.1.1.1 APX #22

001040 N/A 3.2.2.1.7.1 N/A 3.2.2.1.8.1 3.2.2.1.9.1 3.2.1.1.1 3.2.2.1.1.1 APX #23

001041 N/A 3.2.2.1.7.1 N/A 3.2.2.1.8.1 3.2.2.1.9.1 3.2.1.1.1 3.2.2.1.1.1 APX #16

001042 N/A 3.2.2.1.7.1 N/A 3.2.2.1.8.1 3.2.2.1.9.1 3.2.1.1.1 3.2.2.1.1.1 APX #15

001043 N/A 3.2.2.1.7.1 N/A 3.2.2.1.8.1 3.2.2.1.9.1 3.2.1.1.1 3.2.2.1.1.1 APX #48

001044 N/A 3.2.2.1.7.1 N/A 3.2.2.1.8.1 3.2.2.1.9.1 3.2.1.1.1 3.2.2.1.1.1 APX #39

001045 N/A 3.2.2.1.7.1 N/A 3.2.2.1.8.1 3.2.2.1.9.1 3.2.1.1.1 3.2.2.1.1.1 APX #49

001046 N/A 3.2.2.1.7.1 N/A 3.2.2.1.8.1 3.2.2.1.9.1 3.2.1.1.1 3.2.2.1.1.1 APX #24

001047 N/A 3.2.2.1.7.1 N/A 3.2.2.1.8.1 3.2.2.1.9.1 3.2.1.1.1 3.2.2.1.1.1 APX #25

001048 N/A 3.2.2.1.7.1 N/A 3.2.2.1.8.1 3.2.2.1.9.1 3.2.1.1.1 3.2.2.1.1.1 APX #58

001049 N/A 3.2.2.1.7.1 N/A 3.2.2.1.8.1 3.2.2.1.9.1 3.2.1.1.1 3.2.2.1.1.1 APX #26

001050 N/A 3.2.2.1.7.1 N/A 3.2.2.1.8.1 3.2.2.1.9.1 3.2.1.1.1 3.2.2.1.1.1 APX #87

119

Argo data management Argo DAC Cookbook

Format
Id

Code 190 Code 290 Code 296 Code 297 Code 298
Code
301 RPP

Code 501
ANDRO
dec Id

001026 3.4.2.2.1

3.4.3

APX #45

001027

001028 3.4.2.2.1

3.4.3

APX #56

001029

3.4.1.1.2

3.4.3

APX #52

001030 3.4.2.2.1

3.4.3

APX #57

001031

3.4.1.1.2

3.4.3

APX #86

001032

3.4.3

APX #17

001033

3.4.1.1.2

3.4.3

APX #18

001034

3.4.1.1.2

3.4.3

APX #19

001035 3.4.2.2.1

3.4.3

APX #46

001036

3.4.1.1.2

3.4.3

APX #20

001037

3.4.1.1.2

3.4.3

APX #21

001038

3.4.3

APX #64

001039

3.4.1.1.2

3.4.3

APX #22

001040

3.4.1.1.2

3.4.3

APX #23

001041

3.4.1.1.2

3.4.3

APX #16

001042

3.4.3

APX #15

001043 3.4.2.2.1

3.4.3

APX #48

001044

3.4.3

APX #39

001045 3.4.2.2.1

3.4.3

APX #49

001046

3.4.3

APX #24

001047

3.4.3

APX #25

001048 3.4.2.2.1

3.4.1.1.2.3 3.4.2.6 3.4.2.6 3.4.3

APX #58

001049

3.4.1.1.2

3.4.3

APX #26

001050

3.4.1.1.2

3.4.3

APX #87

120

Argo data management Argo DAC Cookbook

Format
Id

Code 502 Code 503 Code 701
Code 901
GRND

ANDRO dec Id

001026

3.4.2.5

3.5

APX #45

001027

001028

3.4.2.5

3.5

APX #56

001029

3.4.2.5

3.5

APX #52

001030

3.4.2.5

3.5

APX #57

001031

3.4.2.5

3.5

APX #86

001032

3.4.2.5

3.5

APX #17

001033

3.4.2.5

3.5

APX #18

001034

3.4.2.5

3.5

APX #19

001035

3.4.2.5

3.5

APX #46

001036

3.4.2.5

3.5

APX #20

001037

3.4.2.5

3.5

APX #21

001038

3.4.2.5

3.5

APX #64

001039

3.4.2.5

3.5

APX #22

001040

3.4.2.5

3.5

APX #23

001041

3.4.2.5

3.5

APX #16

001042

3.4.2.5

3.5

APX #15

001043

3.4.2.5

3.5

APX #48

001044

3.4.2.5

3.5

APX #39

001045

3.4.2.5

3.5

APX #49

001046

3.4.2.5

3.5

APX #24

001047

3.4.2.5

3.5

APX #25

001048

3.4.2.5

3.5

APX #58

001049

3.4.2.5

3.5

APX #26

001050

3.4.2.5

3.5

APX #87

121

Argo data management Argo DAC Cookbook

10.4 APEX floats (format Ids from 001051 to 001075)

Format
Id

Code 0
Launch

Code 100
DST

Code 150
FST

Code 200
DET

Code 250
PST

Code 300
PET

Code 400
DDET

ANDRO
dec Id

001051

001052 3.1.1 3.2.2.1.2 N/A 3.2.2.1.3 3.2.2.1.4.1 3.2.2.1.5.1 3.2.2.1.6 APX #34

001053 3.1.1 3.2.2.1.2 N/A 3.2.2.1.3 3.2.2.1.4.1 3.2.2.1.5.1 3.2.2.1.6 APX #50

001054 3.1.1 3.2.2.1.2 N/A 3.2.2.1.3 3.2.2.1.4.1 3.2.2.1.5.1 3.2.2.1.6 APX #74

001055 3.1.1 3.2.2.1.2 N/A 3.2.2.1.3 3.2.2.1.4.1 3.2.2.1.5.1 3.2.2.1.6 APX #27

001056 3.1.1 3.2.2.1.2 N/A 3.2.2.1.3 3.2.2.1.4.1 3.2.2.1.5.1 3.2.2.1.6 APX #63

001057 3.1.1 3.2.2.1.2 N/A 3.2.2.1.3 3.2.2.1.4.1 3.2.2.1.5.1 3.2.2.1.6 APX #68

001058 3.1.1 3.2.2.1.2 N/A 3.2.2.1.3 3.2.2.1.4.1 3.2.2.1.5.1 3.2.2.1.6 APX #47

001059 3.1.1 3.2.2.1.2 N/A 3.2.2.1.3 3.2.2.1.4.1 3.2.2.1.5.1 3.2.2.1.6 APX #62

001060 3.1.1 3.2.2.1.2 N/A 3.2.2.1.3 3.2.2.1.4.1 3.2.2.1.5.1 3.2.2.1.6 APX #60

001061 3.1.1 3.2.2.1.2 N/A 3.2.2.1.3 3.2.2.1.4.1 3.2.2.1.5.1 3.2.2.1.6 APX #43

001062 3.1.1 3.2.2.1.2 N/A 3.2.2.1.3 3.2.2.1.4.1 3.2.2.1.5.1 3.2.2.1.6 APX #69

001063 3.1.1 3.2.2.1.2 N/A 3.2.2.1.3 3.2.2.1.4.1 3.2.2.1.5.1 3.2.2.1.6 APX #61

001064 3.1.1 3.2.2.1.2 N/A 3.2.2.1.3 3.2.2.1.4.1 3.2.2.1.5.1 3.2.2.1.6 APX #73

001065 3.1.1 3.2.2.1.2 N/A 3.2.2.1.3 3.2.2.1.4.1 3.2.2.1.5.1 3.2.2.1.6 APX #59

001066 3.1.1 3.2.2.1.2 N/A 3.2.2.1.3 3.2.2.1.4.1 3.2.2.1.5.1 3.2.2.1.6 APX #83

001067 3.1.1 3.2.2.1.2 N/A 3.2.2.1.3 3.2.2.1.4.1 3.2.2.1.5.1 3.2.2.1.6 APX #41

001068 3.1.1 3.2.2.1.2 N/A 3.2.2.1.3 3.2.2.1.4.1 3.2.2.1.5.1 3.2.2.1.6
APX #66,
APX #77

001069 3.1.1 3.2.2.1.2 N/A 3.2.2.1.3 3.2.2.1.4.1 3.2.2.1.5.1 3.2.2.1.6 APX #75

001070 3.1.1 3.2.2.1.2 N/A 3.2.2.1.3 3.2.2.1.4.1 3.2.2.1.5.1 3.2.2.1.6 APX #42

001071 3.1.1 3.2.2.1.2 N/A 3.2.2.1.3 3.2.2.1.4.1 3.2.2.1.5.1 3.2.2.1.6 APX #65

001072 3.1.1 3.2.2.1.2 N/A 3.2.2.1.3 3.2.2.1.4.1 3.2.2.1.5.1 3.2.2.1.6 APX #72

001073 3.1.1 3.2.2.1.2 N/A 3.2.2.1.3 3.2.2.1.4.1 3.2.2.1.5.1 3.2.2.1.6 APX #81

001074 3.1.1 3.2.2.1.2 N/A 3.2.2.1.3 3.2.2.1.4.1 3.2.2.1.5.1 3.2.2.1.6 APX #67

001075 3.1.1 3.2.2.1.2 N/A 3.2.2.1.3 3.2.2.1.4.1 3.2.2.1.5.1 3.2.2.1.6 APX #79

122

Argo data management Argo DAC Cookbook

Format
Id

Code 450
DPST

Code 500
AST

Code 550
DAST

Code 600
AET

Code 700
TST

Codes
702-704
FMT, LMT

Code 800
TET

ANDRO
dec Id

001051

001052 N/A 3.2.2.1.7.1 N/A 3.2.2.1.8.1 3.2.2.1.9.1 3.2.1.1.1 3.2.2.1.1.1 APX #34

001053 N/A 3.2.2.1.7.1 N/A 3.2.2.1.8.1 3.2.2.1.9.1 3.2.1.1.1 3.2.2.1.1.1 APX #50

001054 N/A 3.2.2.1.7.1 N/A 3.2.2.1.8.1 3.2.2.1.9.1 3.2.1.1.1 3.2.2.1.1.1 APX #74

001055 N/A 3.2.2.1.7.1 N/A 3.2.2.1.8.1 3.2.2.1.9.1 3.2.1.1.1 3.2.2.1.1.1 APX #27

001056 N/A 3.2.2.1.7.1 N/A 3.2.2.1.8.1 3.2.2.1.9.1 3.2.1.1.1 3.2.2.1.1.1 APX #63

001057 N/A 3.2.2.1.7.1 N/A 3.2.2.1.8.1 3.2.2.1.9.1 3.2.1.1.1 3.2.2.1.1.1 APX #68

001058 N/A 3.2.2.1.7.1 N/A 3.2.2.1.8.1 3.2.2.1.9.1 3.2.1.1.1 3.2.2.1.1.1 APX #47

001059 N/A 3.2.2.1.7.1 N/A 3.2.2.1.8.1 3.2.2.1.9.1 3.2.1.1.1 3.2.2.1.1.1 APX #62

001060 N/A 3.2.2.1.7.1 N/A 3.2.2.1.8.1 3.2.2.1.9.1 3.2.1.1.1 3.2.2.1.1.1 APX #60

001061 N/A 3.2.2.1.7.1 N/A 3.2.2.1.8.1 3.2.2.1.9.1 3.2.1.1.1 3.2.2.1.1.1 APX #43

001062 N/A 3.2.2.1.7.1 N/A 3.2.2.1.8.1 3.2.2.1.9.1 3.2.1.1.1 3.2.2.1.1.1 APX #69

001063 N/A 3.2.2.1.7.1 N/A 3.2.2.1.8.1 3.2.2.1.9.1 3.2.1.1.1 3.2.2.1.1.1 APX #61

001064 N/A 3.2.2.1.7.1 N/A 3.2.2.1.8.1 3.2.2.1.9.1 3.2.1.1.1 3.2.2.1.1.1 APX #73

001065 N/A 3.2.2.1.7.1 N/A 3.2.2.1.8.1 3.2.2.1.9.1 3.2.1.1.1 3.2.2.1.1.1 APX #59

001066 N/A 3.2.2.1.7.1 N/A 3.2.2.1.8.1 3.2.2.1.9.1 3.2.1.1.1 3.2.2.1.1.1 APX #83

001067 N/A 3.2.2.1.7.1 N/A 3.2.2.1.8.1 3.2.2.1.9.1 3.2.1.1.1 3.2.2.1.1.1 APX #41

001068 N/A 3.2.2.1.7.1 N/A 3.2.2.1.8.1 3.2.2.1.9.1 3.2.1.1.1 3.2.2.1.1.1
APX #66,
APX #77

001069 N/A 3.2.2.1.7.1 N/A 3.2.2.1.8.1 3.2.2.1.9.1 3.2.1.1.1 3.2.2.1.1.1 APX #75

001070 N/A 3.2.2.1.7.1 N/A 3.2.2.1.8.1 3.2.2.1.9.1 3.2.1.1.1 3.2.2.1.1.1 APX #42

001071 N/A 3.2.2.1.7.1 N/A 3.2.2.1.8.1 3.2.2.1.9.1 3.2.1.1.1 3.2.2.1.1.1 APX #65

001072 N/A 3.2.2.1.7.1 N/A 3.2.2.1.8.1 3.2.2.1.9.1 3.2.1.1.1 3.2.2.1.1.1 APX #72

001073 N/A 3.2.2.1.7.1 N/A 3.2.2.1.8.1 3.2.2.1.9.1 3.2.1.1.1 3.2.2.1.1.1 APX #81

001074 N/A 3.2.2.1.7.1 N/A 3.2.2.1.8.1 3.2.2.1.9.1 3.2.1.1.1 3.2.2.1.1.1 APX #67

001075 N/A 3.2.2.1.7.1 N/A 3.2.2.1.8.1 3.2.2.1.9.1 3.2.1.1.1 3.2.2.1.1.1 APX #79

123

Argo data management Argo DAC Cookbook

Format
Id

Code 189 Code 190 Code 290 Code 296 Code 297 Code 298
Code 301
RPP

Code 501
ANDRO
dec Id

001051

001052 3.4.2.2.1

3.4.1.1.2.3 3.4.2.6 3.4.2.6 3.4.3

APX #34

001053 3.4.2.2.1

3.4.1.1.2.3 3.4.2.6 3.4.2.6 3.4.3

APX #50

001054

3.4.3

APX #74

001055

3.4.3

APX #27

001056

3.4.1.1.2

3.4.3

APX #63

001057

3.4.1.1.2

3.4.3

APX #68

001058 3.4.2.2.1

3.4.3

APX #47

001059

3.4.3

APX #62

001060 3.4.2.2.1

3.4.1.1.2.3 3.4.2.6 3.4.2.6 3.4.3

APX #60

001061 3.4.2.2.1

3.4.1.1.2.3 3.4.2.6 3.4.2.6 3.4.3

APX #43

001062

3.4.3

APX #69

001063 3.4.2.2.1

3.4.1.1.2.3 3.4.2.6 3.4.2.6 3.4.3 3.2.2.1.7.2 APX #61

001064 3.4.2.2.1

3.4.1.1.2.3 3.4.2.6 3.4.2.6 3.4.3 3.2.2.1.7.2 APX #73

001065

3.4.3

APX #59

001066 3.4.2.3 3.4.2.2.1 3.4.1.1.2

3.4.3 3.2.2.1.7.2 APX #83

001067 3.4.2.2.1

3.4.3 3.2.2.1.7.2 APX #41

001068 3.4.2.2.1

3.4.1.1.2.3 3.4.2.6 3.4.2.6 3.4.3 3.2.2.1.7.2
APX #66,
APX #77

001069 3.4.2.2.1

3.4.1.1.2.3 3.4.2.6 3.4.2.6 3.4.3 3.2.2.1.7.2 APX #75

001070 3.4.2.2.1

3.4.1.1.2.3 3.4.2.6 3.4.2.6 3.4.3 3.2.2.1.7.2 APX #42

001071 3.4.2.2.1

3.4.1.1.2.3 3.4.2.6 3.4.2.6 3.4.3 3.2.2.1.7.2 APX #65

001072 3.4.2.2.1

3.4.1.1.2.3 3.4.2.6 3.4.2.6 3.4.3 3.2.2.1.7.2 APX #72

001073 3.4.2.2.1

3.4.3 3.2.2.1.7.2 APX #81

001074 3.4.2.2.1

3.4.1.1.2.3 3.4.2.6 3.4.2.6 3.4.3

APX #67

001075

3.4.3

APX #79

124

Argo data management Argo DAC Cookbook

Format
Id

Code 502 Code 503 Code 701
Code 901
GRND

ANDRO
dec Id

001051

001052

3.4.2.5

3.5

APX #34

001053

3.4.2.5

3.5

APX #50

001054

3.4.2.5

3.5

APX #74

001055

3.4.2.5

3.5

APX #27

001056

3.4.2.5

3.5

APX #63

001057

3.4.2.5

3.5

APX #68

001058

3.4.2.5

3.5

APX #47

001059

3.4.2.5

3.5

APX #62

001060

3.4.2.5

3.5

APX #60

001061

3.4.2.5

3.5

APX #43

001062

3.4.2.5

3.5

APX #69

001063 3.2.2.1.7.2 3.4.2.5 3.2.2.1.9.2 3.5

APX #61

001064 3.2.2.1.7.2 3.4.2.5 3.2.2.1.9.2 3.5

APX #73

001065

3.4.2.5

3.5

APX #59

001066 3.2.2.1.7.2 3.4.2.5 3.2.2.1.9.2 3.5

APX #83

001067 3.2.2.1.7.2 3.4.2.5 3.2.2.1.9.2 3.5

APX #41

001068 3.2.2.1.7.2 3.4.2.5 3.2.2.1.9.2 3.5

APX #66,
APX #77

001069 3.2.2.1.7.2 3.4.2.5

3.5

APX #75

001070 3.2.2.1.7.2 3.4.2.5 3.2.2.1.9.2 3.5

APX #42

001071 3.2.2.1.7.2 3.4.2.5 3.2.2.1.9.2 3.5

APX #65

001072 3.2.2.1.7.2 3.4.2.5 3.2.2.1.9.2 3.5

APX #72

001073 3.2.2.1.7.2 3.4.2.5 3.2.2.1.9.2 3.5

APX #81

001074

3.4.2.5

3.5

APX #67

001075

3.4.2.5

3.5

APX #79

125

Argo data management Argo DAC Cookbook

10.5 APEX floats (format Ids from 001076 to 001087)

Format
Id

Code 0
Launch

Code 100
DST

Code 150
FST

Code 200
DET

Code 250
PST

Code 300
PET

Code 400
DDET

ANDRO
dec Id

001076

001077

001078

001079

001080

001081 3.1.1 3.2.2.1.2 N/A 3.2.2.1.3 3.2.2.1.4.1 3.2.2.1.5.1 3.2.2.1.6 APX #5

001082 3.1.1 3.2.2.1.2 N/A 3.2.2.1.3 3.2.2.1.4.1 3.2.2.1.5.1 3.2.2.1.6 APX #31

001083 3.1.1 3.2.2.1.2 N/A 3.2.2.1.3 3.2.2.1.4.1 3.2.2.1.5.1 3.2.2.1.6 APX #51

001084 3.1.1 3.2.2.1.2 N/A 3.2.2.1.3 3.2.2.1.4.1 3.2.2.1.5.1 3.2.2.1.6 APX #70

001085 3.1.1 3.2.2.1.2 N/A 3.2.2.1.3 3.2.2.1.4.1 3.2.2.1.5.1 3.2.2.1.6 APX #76

001086 3.1.1 3.2.2.1.2 N/A 3.2.2.1.3 3.2.2.1.4.1 3.2.2.1.5.1 3.2.2.1.6 APX #80

001087 3.1.1 3.2.2.1.2 N/A 3.2.2.1.3 3.2.2.1.4.2 3.2.2.1.5.2 3.2.2.1.6 APX #101

Format
Id

Code 450
DPST

Code 500
AST

Code 550
DAST

Code 600
AET

Code 700
TST

Codes
702-704
FMT, LMT

Code 800
TET

ANDRO
dec Id

001076

001077

001078

001079

001080

001081 N/A 3.2.2.1.7.1 N/A 3.2.2.1.8.1 3.2.2.1.9.1 3.2.1.1.1 3.2.2.1.1.1 APX #5

001082 N/A 3.2.2.1.7.1 N/A 3.2.2.1.8.1 3.2.2.1.9.1 3.2.1.1.1 3.2.2.1.1.1 APX #31

001083 N/A 3.2.2.1.7.1 N/A 3.2.2.1.8.1 3.2.2.1.9.1 3.2.1.1.1 3.2.2.1.1.1 APX #51

001084 N/A 3.2.2.1.7.1 N/A 3.2.2.1.8.1 3.2.2.1.9.1 3.2.1.1.1 3.2.2.1.1.1 APX #70

001085 N/A 3.2.2.1.7.1 N/A 3.2.2.1.8.1 3.2.2.1.9.1 3.2.1.1.1 3.2.2.1.1.1 APX #76

001086 N/A 3.2.2.1.7.1 N/A 3.2.2.1.8.1 3.2.2.1.9.1 3.2.1.1.1 3.2.2.1.1.1 APX #80

001087 N/A 3.2.2.1.7.3 N/A 3.2.2.1.8.2 3.2.2.1.9.3 3.2.1.2.1 3.2.2.1.1.2 APX #101

126

Argo data management Argo DAC Cookbook

Format
Id

Code 190 Code 290 Code 296 Code 297 Code 298
Code 301
RPP

Code 501
ANDRO
dec Id

001076

001077

001078

001079

001080

001081

3.4.3

APX #5

001082

3.4.3

APX #31

001083

3.4.3

APX #51

001084

3.4.3

APX #70

001085

3.4.3

APX #76

001086 3.4.2.3 3.4.1.1.2

3.4.3

APX #80

001087 3.4.2.2.2 3.4.1.1.2

3.4.3

APX #101

Format
Id

Code 502 Code 503 Code 701
Code 901
GRND

ANDRO dec Id

001076

001077

001078

001079

001080

001081

3.4.2.5

3.5

APX #5

001082

3.4.2.5

3.5

APX #31

001083

3.4.2.5

3.5

APX #51

001084

3.4.2.5

3.5

APX #70

001085

3.4.2.5

3.5

APX #76

001086

3.4.2.5

3.5

APX #80

001087

3.4.2.5

3.5

APX #101

127

Argo data management Argo DAC Cookbook

10.6 PROVOR floats

Format
Id

Code 0
Launch

Code 100
DST

Code 150
FST

Code 200
DET

Code 250
PST

Code 300
PET

Code 400
DDET

ANDRO
dec ID

101001

101002 3.1.1 3.2.2.6.6.1 3.2.2.6.6.2 FillValue 3.2.2.6.6.3 3.2.2.6.6.4 FillValue PRV #13

101003 3.1.1 3.2.2.6.7.1 3.2.2.6.7.2 FillValue 3.2.2.6.7.3 3.2.2.6.7.4 FillValue PRV #15

101004 3.1.1 3.2.2.6.7.1 3.2.2.6.7.2 FillValue 3.2.2.6.7.3 3.2.2.6.7.4 FillValue PRV #16

101005 3.1.1 3.2.2.6.6.1 3.2.2.6.6.2 FillValue 3.2.2.6.6.3 3.2.2.6.6.4 FillValue PRV #14

101006 3.1.1 3.2.2.6.3.1 3.2.2.6.3.2 FillValue 3.2.2.6.3.3 3.2.2.6.3.4 FillValue PRV #5

101007 3.1.1 3.2.2.6.5.1 3.2.2.6.5.2 FillValue 3.2.2.6.5.3 3.2.2.6.5.4 FillValue PRV #9

101008 3.1.1 3.2.2.6.3.1 3.2.2.6.3.2 FillValue 3.2.2.6.3.3 3.2.2.6.3.4 FillValue PRV #8

101009 3.1.1 3.2.2.6.3.1 3.2.2.6.3.2 FillValue 3.2.2.6.3.3 3.2.2.6.3.4 FillValue PRV #2

101010 3.1.1 3.2.2.6.3.1 3.2.2.6.3.2 FillValue 3.2.2.6.3.3 3.2.2.6.3.4 FillValue PRV #10

101011 3.1.1 3.2.2.6.1.1 3.2.2.6.1.2 FillValue 3.2.2.6.1.3 3.2.2.6.1.4 FillValue PRV #1

101012 3.1.1 3.2.2.6.1.1 3.2.2.6.1.2 FillValue 3.2.2.6.1.3 3.2.2.6.1.4 FillValue PRV #4

101013 3.1.1 3.2.2.6.1.1 3.2.2.6.1.2 FillValue 3.2.2.6.1.3 3.2.2.6.1.4 FillValue PRV #19

101014 3.1.1 3.2.2.6.1.1 3.2.2.6.1.2 FillValue 3.2.2.6.1.3 3.2.2.6.1.4 FillValue PRV #11

101015 3.1.1 3.2.2.6.1.1 3.2.2.6.1.2 FillValue 3.2.2.6.1.3 3.2.2.6.1.4 FillValue PRV #12

101016

101017 3.1.1 3.2.2.6.1.1 3.2.2.6.1.2 FillValue 3.2.2.6.1.3 3.2.2.6.1.4 FillValue PRV #101

101018 3.1.1 3.2.2.6.1.1 3.2.2.6.1.2 FillValue 3.2.2.6.1.3 3.2.2.6.1.4 FillValue PRV #102

101019 3.1.1 3.2.2.6.1.1 3.2.2.6.1.2 FillValue 3.2.2.6.1.3 3.2.2.6.1.4 FillValue PRV #103

101020

128

Argo data management Argo DAC Cookbook

Format
Id

Code 450
DPST

Code 500
AST

Code 550
DAST

Code 600
AET

Code 700
TST

Codes
702-704
FMT, LMT

Code 800
TET

ANDRO
dec Id

101001

101002 3.2.2.6.6.5 3.2.2.6.6.6 FillValue 3.2.2.6.6.7 3.2.2.6.6.8 3.2.1.1.1 FillValue PRV #13

101003 3.2.2.6.7.5 3.2.2.6.7.6 FillValue 3.2.2.6.7.7 3.2.2.6.7.8 3.2.1.1.1 FillValue PRV #15

101004 3.2.2.6.7.5 3.2.2.6.7.6 FillValue 3.2.2.6.7.7 3.2.2.6.7.8 3.2.1.1.1 FillValue PRV #16

101005 3.2.2.6.6.5 3.2.2.6.6.6 FillValue 3.2.2.6.6.7 3.2.2.6.6.8 3.2.1.1.1 FillValue PRV #14

101006 3.2.2.6.3.5 3.2.2.6.3.6 FillValue 3.2.2.6.3.7 3.2.2.6.3.8 3.2.1.1.1 FillValue PRV #5

101007 3.2.2.6.5.5 3.2.2.6.5.6 FillValue 3.2.2.6.5.7 3.2.2.6.5.8 3.2.1.1.1 FillValue PRV #9

101008 3.2.2.6.3.5 3.2.2.6.3.6 FillValue 3.2.2.6.3.7 3.2.2.6.3.8 3.2.1.1.1 FillValue PRV #8

101009 3.2.2.6.3.5 3.2.2.6.3.6 FillValue 3.2.2.6.3.7 3.2.2.6.3.8 3.2.1.1.1 FillValue PRV #2

101010 3.2.2.6.3.5 3.2.2.6.3.6 FillValue 3.2.2.6.3.7 3.2.2.6.3.8 3.2.1.1.1 FillValue PRV #10

101011 3.2.2.6.1.5 3.2.2.6.1.6 FillValue 3.2.2.6.1.7 3.2.2.6.1.8 3.2.1.1.1 FillValue PRV #1

101012 3.2.2.6.1.5 3.2.2.6.1.6 FillValue 3.2.2.6.1.7 3.2.2.6.1.8 3.2.1.1.1 FillValue PRV #4

101013 3.2.2.6.1.5 3.2.2.6.1.6 FillValue 3.2.2.6.1.7 3.2.2.6.1.8 3.2.1.1.1 FillValue PRV #19

101014 3.2.2.6.1.5 3.2.2.6.1.6 FillValue 3.2.2.6.1.7 3.2.2.6.1.8 3.2.1.1.1 FillValue PRV #11

101015 3.2.2.6.1.5 3.2.2.6.1.6 FillValue 3.2.2.6.1.7 3.2.2.6.1.8 3.2.1.1.1 FillValue PRV #12

101016

101017 3.2.2.6.1.5 3.2.2.6.1.6 FillValue 3.2.2.6.1.7 3.2.2.6.1.8 3.2.1.2.1 FillValue PRV #101

101018 3.2.2.6.1.5 3.2.2.6.1.6 FillValue 3.2.2.6.1.7 3.2.2.6.1.8 3.2.1.2.1 FillValue PRV #102

101019 3.2.2.6.1.5 3.2.2.6.1.6 FillValue 3.2.2.6.1.7 3.2.2.6.1.8 3.2.1.2.1 FillValue PRV #103

101020

129

Argo data management Argo DAC Cookbook

Format
Id

Code 189 Code 190 Code 198 Code 203 Code 290 Code 297 Code 298
ANDRO
dec Id

101001

101002 3.4.2.4.1

3.4.2.5 3.4.1.2.1

PRV #13

101003 3.4.2.4.1

3.4.2.5 3.4.1.2.1

PRV #15

101004 3.4.2.4.1

3.4.2.5 3.4.1.2.1

PRV #16

101005 3.4.2.4.1

3.4.2.5 3.4.1.2.1

PRV #14

101006 3.4.2.4.1

3.4.2.5 3.4.1.2.1 3.4.2.6 3.4.2.6 PRV #5

101007 3.4.2.4.1

3.4.2.5 3.4.1.2.1 3.4.2.6 3.4.2.6 PRV #9

101008 3.4.2.4.1

3.4.2.5 3.4.1.2.1 3.4.2.6 3.4.2.6 PRV #8

101009 3.4.2.4.1

3.4.2.5 3.4.1.2.1 3.4.2.6 3.4.2.6 PRV #2

101010 3.4.2.4.1

3.4.2.5 3.4.1.2.1 3.4.2.6 3.4.2.6 PRV #10

101011 3.4.2.4.1 3.4.2.7 3.4.2.5 3.4.1.2.1 3.4.2.6 3.4.2.6 PRV #1

101012 3.4.2.4.1 3.4.2.7 3.4.2.5 3.4.1.2.1 3.4.2.6 3.4.2.6 PRV #4

101013 3.4.2.4.1

3.4.2.5 3.4.1.2.1

PRV #19

101014 3.4.2.4.1 3.4.2.7 3.4.2.5 3.4.1.2.1 3.4.2.6 3.4.2.6 PRV #11

101015 3.4.2.4.1 3.4.2.7 3.4.2.5 3.4.1.2.1 3.4.2.6 3.4.2.6 PRV #12

101016

101017 3.4.2.11 3.4.2.4.1 3.4.2.7 3.4.2.5 3.4.1.2.1 3.4.2.6 3.4.2.6 PRV #101

101018 3.4.2.11 3.4.2.4.1 3.4.2.7 3.4.2.5 3.4.1.2.1 3.4.2.6 3.4.2.6 PRV #102

101019 3.4.2.11 3.4.2.4.1 3.4.2.7 3.4.2.5 3.4.1.2.1 3.4.2.6 3.4.2.6 PRV #103

101020

130

Argo data management Argo DAC Cookbook

Format
Id

Code 301
RPP

Code 389 Code 398 Code 503 Code 589 Code 590
Code 901
GRND

ANDRO
dec Id

101001

101002 3.4.3 3.4.2.5 3.4.2.4.1 3.5 PRV #13

101003 3.4.3 3.4.2.5 3.4.2.4.1 3.5 PRV #15

101004 3.4.3 3.4.2.5 3.4.2.4.1 3.5 PRV #16

101005 3.4.3 3.4.2.5 3.4.2.4.1 3.5 PRV #14

101006 3.4.3 3.4.2.5 3.4.2.4.1 3.5 PRV #5

101007 3.4.3 3.4.2.5 3.4.2.4.1 3.5 PRV #9

101008 3.4.3 3.4.2.5 3.4.2.4.1 3.5 PRV #8

101009 3.4.3 3.4.2.5 3.4.2.4.1 3.5 PRV #2

101010 3.4.3 3.4.2.5 3.4.2.4.1 3.5 PRV #10

101011 3.4.3 3.4.2.5 3.4.2.4.1 3.5 PRV #1

101012 3.4.3 3.4.2.5 3.4.2.4.1 3.5 PRV #4

101013 3.4.3 3.4.2.5 3.4.2.4.1 3.5 PRV #19

101014 3.4.3 3.4.2.5 3.4.2.4.1 3.5 PRV #11

101015 3.4.3 3.4.2.5 3.4.2.4.1 3.5 PRV #12

101016

101017 3.4.3 3.4.2.11 3.4.2.9 3.4.2.5 3.4.2.11 3.4.2.4.1 3.5 PRV #101

101018 3.4.3 3.4.2.11 3.4.2.9 3.4.2.5 3.4.2.11 3.4.2.4.1 3.5 PRV #102

101019 3.4.3 3.4.2.11 3.4.2.9 3.4.2.5 3.4.2.11 3.4.2.4.1 3.5 PRV #103

101020

131

Argo data management Argo DAC Cookbook

10.7 PROVOR-MT floats

Format
Id

Code 0
Launch

Code 100
DST

Code 150
FST

Code 200
DET

Code 250
PST

Code 300
PET

Code 400
DDET

ANDRO
dec ID

??????

100001 3.1.1 3.2.2.6.1.1 3.2.2.6.1.2 FillValue 3.2.2.6.1.3 3.2.2.6.1.4 FillValue PRV #23

100002 3.1.1 3.2.2.6.6.1 3.2.2.6.6.2 FillValue 3.2.2.6.6.3 3.2.2.6.6.4 FillValue PRV #21

100003 3.1.1 3.2.2.6.4.1 3.2.2.6.4.2 FillValue 3.2.2.6.4.3 3.2.2.6.4.4 FillValue PRV #22

100004 3.1.1 3.2.2.6.4.1 3.2.2.6.4.2 FillValue 3.2.2.6.4.3 3.2.2.6.4.4 FillValue PRV #18

100005 3.1.1 3.2.2.6.4.1 3.2.2.6.4.2 FillValue 3.2.2.6.4.3 3.2.2.6.4.4 FillValue PRV #7

100006 3.1.1 3.2.2.6.4.1 3.2.2.6.4.2 FillValue 3.2.2.6.4.3 3.2.2.6.4.4 FillValue PRV #6

100007

100008 3.1.1 3.2.2.6.4.1 3.2.2.6.4.2 FillValue 3.2.2.6.4.3 3.2.2.6.4.4 FillValue PRV #20

100009

Format
Id

Code 450
DPST

Code 500
AST

Code 550
DAST

Code 600
AET

Code 700
TST

Codes
702-704
FMT, LMT

Code 800
TET

ANDRO
dec Id

??????

100001 3.2.2.6.1.5 3.2.2.6.1.6 FillValue 3.2.2.6.1.7 3.2.2.6.1.8 3.2.1.1.1 FillValue PRV #23

100002 3.2.2.6.6.5 3.2.2.6.6.6 FillValue 3.2.2.6.6.7 3.2.2.6.6.8 3.2.1.1.1 FillValue PRV #21

100003 3.2.2.6.4.5 3.2.2.6.4.6 FillValue 3.2.2.6.4.7 3.2.2.6.4.8 3.2.1.1.1 FillValue PRV #22

100004 3.2.2.6.4.5 3.2.2.6.4.6 FillValue 3.2.2.6.4.7 3.2.2.6.4.8 3.2.1.1.1 FillValue PRV #18

100005 3.2.2.6.4.5 3.2.2.6.4.6 FillValue 3.2.2.6.4.7 3.2.2.6.4.8 3.2.1.1.1 FillValue PRV #7

100006 3.2.2.6.4.5 3.2.2.6.4.6 FillValue 3.2.2.6.4.7 3.2.2.6.4.8 3.2.1.1.1 FillValue PRV #6

100007

100008 3.2.2.6.4.5 3.2.2.6.4.6 FillValue 3.2.2.6.4.7 3.2.2.6.4.8 3.2.1.1.1 FillValue PRV #20

100009

Format
Id

Code 198 Code 203 Code 290 Code 297 Code 298
Code 301
RPP

ANDRO
dec Id

??????

100001 3.4.2.7 3.4.2.5 3.4.1.2.1 3.4.2.6 3.4.2.6 3.4.3 PRV #23

100002

3.4.2.5 3.4.1.2.1

3.4.3 PRV #21

100003

3.4.2.5 3.4.1.2.1

3.4.3 PRV #22

100004

3.4.2.5 3.4.1.2.1

3.4.3 PRV #18

100005

3.4.2.5 3.4.1.2.1

3.4.3 PRV #7

100006

3.4.2.5 3.4.1.2.1

3.4.3 PRV #6

100007

100008

3.4.2.5 3.4.1.2.1

3.4.3 PRV #20

100009

 3.4.1.2.1

132

Argo data management Argo DAC Cookbook

Format
Id

Code 390 Code 398 Code 497 Code 498 Code 503 Code 590
Code 901
GRND

ANDRO
dec Id

??????

100001

3.4.2.5

3.5 PRV #23

100002

3.4.2.5

3.5 PRV #21

100003

3.4.2.5

3.5 PRV #22

100004

3.4.2.5

3.5 PRV #18

100005

3.4.2.5

3.5 PRV #7

100006

3.4.2.5

3.5 PRV #6

100007

100008

3.4.2.5

3.5 PRV #20

100009

10.8 ARVOR floats

Format
Id

Code 0
Launch

Code 100
DST

Code 150
FST

Code 200
DET

Code 250
PST

Code 300
PET

Code 400
DDET

ANDRO
dec Id

102001

102002 3.1.1 3.2.2.6.2.1 3.2.2.6.2.2 FillValue 3.2.2.6.2.3 3.2.2.6.2.4 FillValue PRV #3

102003 3.1.1 3.2.2.6.2.1 3.2.2.6.2.2 FillValue 3.2.2.6.2.3 3.2.2.6.2.4 FillValue PRV #17

102004 3.1.1 3.2.2.6.2.1 3.2.2.6.2.2 FillValue 3.2.2.6.2.3 3.2.2.6.2.4 FillValue PRV #104

Format
Id

Code 450
DPST

Code 500
AST

Code 550
DAST

Code 600
AET

Code 700
TST

Codes
702-704
FMT, LMT

Code 800
TET

ANDRO
dec Id

102001

102002 3.2.2.6.2.5 3.2.2.6.2.6 FillValue 3.2.2.6.2.7 3.2.2.6.2.8 3.2.1.1.1 FillValue PRV #3

102003 3.2.2.6.2.5 3.2.2.6.2.6 FillValue 3.2.2.6.2.7 3.2.2.6.2.8 3.2.1.1.1 FillValue PRV #17

102004 3.2.2.6.2.5 3.2.2.6.2.6 FillValue 3.2.2.6.2.7 3.2.2.6.2.8 3.2.1.2.1 FillValue PRV #104

Format
Id

Code 190 Code 198 Code 203 Code 290 Code 297 Code 298
Code 301
RPP

ANDRO
dec Id

102001

102002 3.4.2.4.1 3.4.2.7 3.4.2.5 3.4.1.2.1 3.4.2.6 3.4.2.6 3.4.3 PRV #3

102003 3.4.2.4.1 3.4.2.7 3.4.2.5 3.4.1.2.1 3.4.2.6 3.4.2.6 3.4.3 PRV #17

102004 3.4.2.4.1 3.4.2.7 3.4.2.5 3.4.1.2.1 3.4.2.6 3.4.2.6 3.4.3 PRV #104

Format
Id

Code 390 Code 398 Code 497 Code 498 Code 503 Code 590
Code 901
GRND

ANDRO
dec Id

102001

102002

3.4.2.5 3.4.2.4.1 3.5 PRV #3

102003

3.4.2.5 3.4.2.4.1 3.5 PRV #17

102004 3.4.2.9

3.4.2.5 3.4.2.4.1 3.5 PRV #104

133

Argo data management Argo DAC Cookbook

10.9 SOLO floats

Format
Id

Code 0
Launch

Code 100
DST

Code 150
FST

Code 200
DET

Code 250
PST

Code 300
PET

Code 400
DDET

200001 3.1.1 3.2.2.7 3.2.2.7 3.2.2.7 3.2.2.7 3.2.2.7 3.2.2.7

200002 3.1.1 3.2.2.7 3.2.2.7 3.2.2.7 3.2.2.7 3.2.2.7 3.2.2.7

200003 3.1.1 3.2.2.7 3.2.2.7 3.2.2.7 3.2.2.7 3.2.2.7 3.2.2.7

200004 3.1.1 3.2.2.7 3.2.2.7 3.2.2.7 3.2.2.7 3.2.2.7 3.2.2.7

200010 3.1.1 3.2.2.7 3.2.2.7 3.2.2.7 3.2.2.7 3.2.2.7 3.2.2.7

200011 3.1.1 3.2.2.7 3.2.2.7 3.2.2.7 3.2.2.7 3.2.2.7 3.2.2.7

200012 3.1.1 3.2.2.7 3.2.2.7 3.2.2.7 3.2.2.7 3.2.2.7 3.2.2.7

200005 3.2.2.8 3.2.2.8 3.2.2.8 3.2.2.8 3.2.2.8 3.2.2.8 3.2.2.8

Format
Id

Code 450
DPST

Code 500
AST

Code 550
DAST

Code 600
AET

Code 700
TST

Code
702-704
FMT, LMT

Code 800
TET

200001 3.2.2.7 3.2.2.7 N/A 3.2.2.7 3.2.2.7 3.2.1.1.1 3.2.2.7

200002 3.2.2.7 3.2.2.7 N/A 3.2.2.7 3.2.2.7 3.2.1.1.1 3.2.2.7

200003 3.2.2.7 3.2.2.7 N/A 3.2.2.7 3.2.2.7 3.2.1.1.1 3.2.2.7

200004 3.2.2.7 3.2.2.7 N/A 3.2.2.7 3.2.2.7 3.2.1.1.1 3.2.2.7

200010 3.2.2.7 3.2.2.7 N/A 3.2.2.7 3.2.2.7 3.2.1.1.1 3.2.2.7

200011 3.2.2.7 3.2.2.7 N/A 3.2.2.7 3.2.2.7 3.2.1.1.1 3.2.2.7

200012 3.2.2.7 3.2.2.7 N/A 3.2.2.7 3.2.2.7 3.2.1.1.1 3.2.2.7

200005 3.2.2.8 3.2.2.8 N/A 3.2.2.8 3.2.2.8 3.2.2.8 3.2.2.8

Format Id Code 296
Code 301
RPP

Code 503
Code 901
GRND

200001 3.4.1.4 3.4.3 3.4.2.5 3.5

200002 3.4.1.4 3.4.3 3.4.2.5 3.5

200003 3.4.1.4 3.4.3 3.4.2.5 3.5

200004 3.4.1.4 3.4.3 3.4.2.5 3.5

200010 3.4.1.4 3.4.3 3.4.2.5 3.5

200011 3.4.1.4 3.4.3 3.4.2.5 3.5

200012 3.4.1.4 3.4.3 3.4.2.5 3.5

200005 3.4.1.4 3.2.2.8 3.2.2.8 3.5

134

Argo data management Argo DAC Cookbook

10.10 SOLO-W floats

Format Id
Code 0
Launch

Code 100
DST

Code 150
FST

Code 200
DET

Code 250
PST

Code 300
PET

Code 400
DDET

202001

202002

202010

202011

202012

Format Id
Code 450
DPST

Code 500
AST

Code 550
DAST

Code 600
AET

Code 700
TST

Code
702-704
FMT, LMT

Code 800
TET

202001

202002

202010

202011

202012

Format Id Code 296
Code 301
RPP

Code 503
Code 901
GRND

202001

202002

202010

202011

202012

135

Argo data management Argo DAC Cookbook

10.11 SOLO-II floats

Format Id
Code 0
Launch

Code 100
DST

Code 150
FST

Code 200
DET

Code 250
PST

Code 300
PET

Code 400
DDET

202001 3.2.2.8 3.2.2.8 3.2.2.8 3.2.2.8 3.2.2.8 3.2.2.8 3.2.2.8

202002 3.2.2.8 3.2.2.8 3.2.2.8 3.2.2.8 3.2.2.8 3.2.2.8 3.2.2.8

202010 3.2.2.8 3.2.2.8 3.2.2.8 3.2.2.8 3.2.2.8 3.2.2.8 3.2.2.8

204010 3.2.2.8 3.2.2.8 3.2.2.8 3.2.2.8 3.2.2.8 3.2.2.8 3.2.2.8

202011 3.2.2.8 3.2.2.8 3.2.2.8 3.2.2.8 3.2.2.8 3.2.2.8 3.2.2.8

202012 3.2.2.8 3.2.2.8 3.2.2.8 3.2.2.8 3.2.2.8 3.2.2.8 3.2.2.8

202013 3.2.2.8 3.2.2.8 3.2.2.8 3.2.2.8 3.2.2.8 3.2.2.8 3.2.2.8

204013 3.2.2.8 3.2.2.8 3.2.2.8 3.2.2.8 3.2.2.8 3.2.2.8 3.2.2.8

202014 3.2.2.8 3.2.2.8 3.2.2.8 3.2.2.8 3.2.2.8 3.2.2.8 3.2.2.8

202015 3.2.2.8 3.2.2.8 3.2.2.8 3.2.2.8 3.2.2.8 3.2.2.8 3.2.2.8

Format Id
Code 450
DPST

Code 500
AST

Code 550
DAST

Code 600
AET

Code 700
TST

Code
702-704
FMT, LMT

Code 800
TET

202001 3.2.2.8 3.2.2.8 N/A 3.2.2.8 3.2.2.8 3.2.2.8 3.2.2.8

202002 3.2.2.8 3.2.2.8 N/A 3.2.2.8 3.2.2.8 3.2.2.8 3.2.2.8

202010 3.2.2.8 3.2.2.8 N/A 3.2.2.8 3.2.2.8 3.2.2.8 3.2.2.8

204010 3.2.2.8 3.2.2.8 N/A 3.2.2.8 3.2.2.8 3.2.2.8 3.2.2.8

202011 3.2.2.8 3.2.2.8 N/A 3.2.2.8 3.2.2.8 3.2.2.8 3.2.2.8

202012 3.2.2.8 3.2.2.8 N/A 3.2.2.8 3.2.2.8 3.2.2.8 3.2.2.8

202013 3.2.2.8 3.2.2.8 N/A 3.2.2.8 3.2.2.8 3.2.2.8 3.2.2.8

204013 3.2.2.8 3.2.2.8 N/A 3.2.2.8 3.2.2.8 3.2.2.8 3.2.2.8

202014 3.2.2.8 3.2.2.8 N/A 3.2.2.8 3.2.2.8 3.2.2.8 3.2.2.8

Format
Id

Code 189 Code 190 Code 199 Code 239 Code 250 Code 296
Code 301
RPP

202001 3.2.2.8 3.4.2.4.3 3.2.2.8 3.2.2.8 3.2.2.8 3.4.1.4 3.2.2.8

202002 3.2.2.8 3.4.2.4.3 3.2.2.8 3.2.2.8 3.2.2.8 3.4.1.4 3.2.2.8

202010 3.2.2.8 3.4.2.4.3 3.2.2.8 3.2.2.8 3.2.2.8 3.4.1.4 3.2.2.8

204010 3.2.2.8 3.4.2.4.3 3.2.2.8 3.2.2.8 3.2.2.8 3.4.1.4 3.2.2.8

202011 3.2.2.8 3.4.2.4.3 3.2.2.8 3.2.2.8 3.2.2.8 3.4.1.4 3.2.2.8

202012 3.2.2.8 3.4.2.4.3 3.2.2.8 3.2.2.8 3.2.2.8 3.4.1.4 3.2.2.8

202013 3.2.2.8 3.4.2.4.3 3.2.2.8 3.2.2.8 3.2.2.8 3.4.1.4 3.2.2.8

204013 3.2.2.8 3.4.2.4.3 3.2.2.8 3.2.2.8 3.2.2.8 3.4.1.4 3.2.2.8

202014 3.2.2.8 3.4.2.4.3 3.2.2.8 3.2.2.8 3.2.2.8 3.4.1.4 3.2.2.8

136

Argo data management Argo DAC Cookbook

Format Id
Code
389/390

Code
489/490

Code 503
Code
589/590

Code 599
Code 901
GRND

202001 3.2.2.8 3.2.2.8 3.4.2.5 3.2.2.8 3.2.2.8 3.5

202002 3.2.2.8 3.2.2.8 3.4.2.5 3.2.2.8 3.2.2.8 3.5

202010 3.2.2.8 3.2.2.8 3.4.2.5 3.2.2.8 3.2.2.8 3.5

204010 3.2.2.8 3.2.2.8 3.4.2.5 3.2.2.8 3.2.2.8 3.5

202011 3.2.2.8 3.2.2.8 3.4.2.5 3.2.2.8 3.2.2.8 3.5

202012 3.2.2.8 3.2.2.8 3.4.2.5 3.2.2.8 3.2.2.8 3.5

202013 3.2.2.8 3.2.2.8 3.4.2.5 3.2.2.8 3.2.2.8 3.5

204013 3.2.2.8 3.2.2.8 3.4.2.5 3.2.2.8 3.2.2.8 3.5

202014 3.2.2.8 3.2.2.8 3.4.2.5 3.2.2.8 3.2.2.8 3.5

137

Argo data management Argo DAC Cookbook

10.12 NAVIS floats

Format Id
Code 0
Launch

Code 100
DST

Code 150
FST

Code 200
DET

Code 250
PST

Code 300
PET

Code 400
DDET

3.1.1 3.2.2.2.1 3.2.2.2.2 3.2.2.2.3 FillValue 3.2.2.2.4 3.2.2.2.5

3.1.1

3.1.1

3.1.1

Format Id
Code 450
DPST

Code 500
AST

Code 550
DAST

Code 600
AET

Code 700
TST

Code
702-704
FMT, LMT

Code 800
TET

FillValue 3.2.2.2.6 N/A 3.2.2.2.7 3.2.2.2.8 3.2.1.2.1 3.2.2.2.9

3.2.1.2.1

3.2.1.2.1

3.2.1.2.1

Format Id Code 290
Code 301
RPP

Code 503
Code 901
GRND

3.4.3 3.4.2.5 3.5

3.4.3

3.5

3.4.3

3.5

3.4.3

3.5

138

Argo data management Argo DAC Cookbook

10.13 NEMO floats

Format Id
Code 0
Launch

Code 100
DST

Code 150
FST

Code 200
DET

Code 250
PST

Code 300
PET

Code 400
DDET

400002 3.1.1 3.2.2.3.1 3.2.2.3.2 3.2.2.3.3 3.2.2.3.3 3.2.2.3.4 3.2.2.3.5

400001

400003

400004

400005

Format Id
Code 450
DPST

Code 500
AST

Code 550
DAST

Code 600
AET

Code 700
TST

Code
702-704
FMT, LMT

Code 800
TET

400002 FillValue 3.2.2.3.6 N/A 3.2.2.3.7 3.2.2.3.8 3.2.1.1.1 3.2.2.3.9

400001

400003

400004

400005

Format Id Code 290
Code 301
RPP

Code 503
Code 901
GRND

400002

3.4.3 3.4.2.5 3.5

400001

400003

400004

400005

139

Argo data management Argo DAC Cookbook

10.14 NOVA floats

Format Id
Code 0
Launch

Code 100
DST

Code 150
FST

Code 200
DET

Code 250
PST

Code 300
PET

Code 400
DDET

600001 3.1.1 3.2.2.5.1 3.2.2.5.2 FillValue 3.2.2.5.3 3.2.2.5.4 3.2.2.5.5

Format Id
Code 450
DPST

Code 500
AST

Code 550
DAST

Code 600
AET

Code 700
TST

Code 702-
704 FMT,
LMT

Code 800
TET

600001 FillValue 3.2.2.5.6 N/A 3.2.2.5.7 3.2.2.5.8 3.2.1.2.1 3.2.2.5.9

Format Id Code 290
Code 301
RPP

Code 503
Code 901
GRND

600001

3.4.3 3.4.2.5 3.5

140

Argo data management Argo DAC Cookbook

10.15 NINJA floats

Format
Id

Code 0
Launch

Code 100
DST

Code 150
FST

Code 200
DET

Code 250
PST

Code 300
PET

Code 400
DDET

ANDRO
dec Id

300001 3.1.1 3.2.2.4.1.1 3.2.2.4.1.2 FillValue 3.2.2.4.1.3 3.2.2.4.1.4 3.2.2.4.1.5 NJA #1

300002 3.1.1 3.2.2.4.1.1 3.2.2.4.1.2 FillValue 3.2.2.4.1.3 3.2.2.4.1.4 3.2.2.4.1.5 NJA #1

300003 3.1.1 3.2.2.4.1.1 3.2.2.4.1.2 FillValue 3.2.2.4.1.3 3.2.2.4.1.4 3.2.2.4.1.5 NJA #2

300004 3.1.1 3.2.2.4.2 3.2.2.4.2 FillValue 3.2.2.4.2 3.2.2.4.2 3.2.2.4.2 NJA #3

Format
Id

Code 450
DPST

Code 500
AST

Code 550
DAST

Code 600
AET

Code 700
TST

Code
702-704
FMT, LMT

Code 800
TET

ANDRO
dec Id

300001 FillValue 3.2.2.4.1.6 FillValue 3.2.2.4.1.7 3.2.2.4.1.8 3.2.1.1.1 3.2.2.4.1.9 NJA #1

300002 FillValue 3.2.2.4.1.6 FillValue 3.2.2.4.1.7 3.2.2.4.1.8 3.2.1.1.1 3.2.2.4.1.9 NJA #1

300003 FillValue 3.2.2.4.1.6 FillValue 3.2.2.4.1.7 3.2.2.4.1.8 3.2.1.1.1 3.2.2.4.1.9 NJA #2

300004 FillValue 3.2.2.4.2 FillValue 3.2.2.4.2 3.2.2.4.2 3.2.1.1.1 3.2.2.4.2 NJA #3

Format
Id

Code 290
Code 301
RPP

Code 498 Code 503 Code 590
Code 901
GRND

ANDRO dec
Id

300001 3.4.1.3.1.2 3.4.3 3.4.2.10 3.4.2.5 3.4.2.4.2 3.5 NJA #1

300002 3.4.1.3.1.2 3.4.3 3.4.2.10 3.4.2.5 3.4.2.4.2 3.5 NJA #1

300003 3.4.1.3.1.2 3.4.3 3.4.2.10 3.4.2.5 3.4.2.4.2 3.5 NJA #2

300004 3.4.1.3.1.2 3.4.3

3.4.2.5

3.5 NJA #3

141

Argo data management Argo DAC Cookbook

11 ANNEX H: How to calculate position

When a GPS fix is not available, a weighted average of all Iridium fixes should be used.

Lat: Calculated latitude

Lon: Calculated longitude

wi: weight

yi: Latitude of Iridium fix in a certain cycle

xi: Longitude of Iridium fix in a certain cycle

Ri: CEPradius in a certain cycle

N: number of all Iridium fixes in a certain cycle

11.1 JULD_LOCATION

JULD_LOCATION = minimum "Time of Session"

142

Argo data management Argo DAC Cookbook

11.2 POSITION_QC

When the average CEPradius (which is not a weight averaged CEPradius) is less than 5km,

POSITION_QC=1 (good data).

When the average CEPradius is more than 5 km,

POSITION_QC=2 (probably good data).

143

Argo data management Argo DAC Cookbook

12 ANNEX I: Implementation of the JAMSTEC trajectory quality
control method

The JAMSTEC trajectory quality control method is described in Nakamura et al (2008), "Quality

control method of Argo float position data", JAMSTEC Report of Research and Development, Vol. 7,

11-18.

This method checks the surface trajectory of an Argos float by considering the speeds induced by the

successive Argos fixes. The test can flag the surface position as '3' or '4'.

In the following, we propose a detailed description of the algorithm to implement.

12.1 Inputs

The inputs of the algorithm are:

 The surface trajectory to be checked (N Argos location dates, latitudes, longitudes and

classes),

 The last good (flagged as '1') surface location of the (already checked) previous (received)

cycle.

12.2 Algorithm

Assuming that the location dates have not been flagged as bad by the test #2 "Impossible date test", we

first chronologically sort the surface positions.

The whole surface trajectory is used to initialize the (checked) current trajectory.

The current trajectory is processed in an infinite loop in which the following steps are performed:

12.2.1 Step 1

The subsurface drift speed is computed between the last good surface position of the previous cycle

and the first position of the current trajectory.

If this speed is greater than 3 m/s, the first position of the current trajectory is flagged as '4', this

position is then excluded from the current trajectory and a new iteration of the infinite loop starts.

12.2.2 Step 2

Speeds are computed for the second position to the last position of the current trajectory. Each speed is

computed between position #i-1 and position #i and affected to position #i.

In case of duplicated positions (i.e. if position #i-1 and position #i have the same latitude, longitude

and date): the position #i is flagged as '4', it is then excluded from the current trajectory and a new

iteration of the infinite loop starts.

In case of an erroneous cycle number of the position #i (i.e. if the times difference between position #i

and position #i-1 is greater than one day): the position #i is flagged as '4', it is then excluded from the

current trajectory and a new iteration of the infinite loop starts.

12.2.3 Step 3

The position #iMax is found as the position with the maximum speed.

144

Argo data management Argo DAC Cookbook

If this maximum speed is greater than 3 m/s, the position #iMax is 'questionable' and the speed test

(see §12.3) is performed on it over the current trajectory.

The speed test should lead to define position #iMax or/and position #iMax-1 as 'abnormal'.

12.2.4 Step 4

If the distance test (see §12.4) between position #iMax and position #iMax-1 is verified, the

'abnormal' position(s) is (are) flagged as '3'.

The 'abnormal' position(s) is(are) then deleted from the current trajectory (even when the distance test

is not verified) and a new iteration of the infinite loop starts.

The infinite loop ends when no 'abnormal' position has been detected or when the current trajectory

has less than 2 positions.

12.3 Speed test

The speed test is performed on a 'questionable' position over a given trajectory.

The 'questionable' position (called B in the following) can be all but the first position of the trajectory.

The position which precedes B on the trajectory is called A in the following.

12.3.1 Case of different Argos classes

If positions A and B have different Argos classes, the position with the less accurate Argos class is

defined as 'abnormal' by the speed test.

Remember that the accuracy of the Argos location classes is the following:

more accurate <= 3, 2, 1, 0, A, B, Z => less accurate

12.3.2 Case of identical Argos classes

If positions A and B have the same Argos classes:

 If the trajectory only comprises the two positions A and B, both positions are defined as

'abnormal' by the speed test,

 Otherwise the speed test depends on the position of the location B on the trajectory, 3 cases

are possible.

Case 1: If B is the second position of the trajectory

In this case: A is the first position, B the second one and there is a position Y following the position B

on the trajectory.

A(1)

B(2)

Y(3)

145

Argo data management Argo DAC Cookbook

Speeds on the segments A-Y (orange) and B-Y (blue) are computed: if speedA-Y is greater than speedB-

Y, the position A is defined as 'abnormal' by the speed test otherwise B is defined as 'abnormal' by the

speed test.

Case 2: If B is the last position of the trajectory

In this case: A is the last but one position, B is the last position and there is a position X preceding the

position A on the trajectory.

Speeds on the segments X-A (orange) and X-B (blue) are computed: if speedX-A is greater than speedX-

B, the position A is defined as 'abnormal' by the speed test otherwise B is defined as 'abnormal' by the

speed test.

Case 3: we are not in case 1 or 2

In this case: there is a position X preceding the position A on the trajectory and a position Y following

the position B on the trajectory.

Speeds on the segments X-A-Y (orange trajectory) and X-B-Y (blue trajectory) are computed. If

speedX-A-Y is greater than speedX-B-Y, the position A is defined as 'abnormal' by the speed test otherwise

B is defined as 'abnormal' by the speed test.

12.4 Distance test

The distance test is performed on two Argos locations A and B.

The distance test is verified if the distance between locations A and B is greater or equal to

 where and are the radii of position error for locations A and B

respectively.

These position errors, deduced from the position classes, are 150 m, 350 m and 1000 m for Argos

class 3, 2 and 1 respectively. Moreover we have associated a position error of 1500 m, 1501 m, 1502

m and 1503 m for Argos classes 0, A, B and Z respectively.

X(i-2)

A(i-1)

B(i)

Y(i+1

)

X(end-2)

A(end-1)

B(end)

146

Argo data management Argo DAC Cookbook

12.5 Distance computation

As far as distance and speed are concerned in this trajectory QC method, we must specify an algorithm

to compute distance between positions of the surface trajectory. This algorithm must be common to all

the DACs so that the trajectory QC results will not depend on DAC's distance computation method.

We propose to use the distance algorithm from the Laboratoire de Physiques des Océans (LPO) at

IFREMER.

This algorithm computes distance between points on the earth using the WGS 1984 ellipsoid, its

Matlab implementation and some test points are provided below.

12.5.1 Matlab implementation of the LPO distance algorithm

function [range, A12, A21] = distance_lpo(lat, long)

%

% Computes distance and bearing between points on the earth using WGS 1984

% ellipsoid

%

% [range, A12, A21] = distance_lpo(lat, long) computes the ranges RANGE between

% points specified in the LAT and LONG vectors (decimal degrees with positive

% indicating north/east). Forward and reverse bearings (degrees) are returned

% in AF, AR.

%

% Ellipsoid formulas are recommended for distance d<2000 km,

% but can be used for longer distances.

%

% GIVEN THE LATITUDES AND LONGITUDES (IN DEG.) IT ASSUMES THE IAU SPHERO

% DEFINED IN THE NOTES ON PAGE 523 OF THE EXPLANATORY SUPPLEMENT TO THE

% AMERICAN EPHEMERIS.

%

% THIS PROGRAM COMPUTES THE DISTANCE ALONG THE NORMAL

% SECTION (IN M.) OF A SPECIFIED REFERENCE SPHEROID GIVEN

% THE GEODETIC LATITUDES AND LONGITUDES OF THE END POINTS

% *** IN DECIMAL DEGREES ***

%

% IT USES ROBBIN'S FORMULA, AS GIVEN BY BOMFORD, GEODESY,

% FOURTH EDITION, P. 122. CORRECT TO ONE PART IN 10**8

% AT 1600 KM. ERRORS OF 20 M AT 5000 KM.

%

% CHECK: SMITHSONIAN METEOROLOGICAL TABLES, PP. 483 AND 484,

% GIVES LENGTHS OF ONE DEGREE OF LATITUDE AND LONGITUDE

% AS A FUNCTION OF LATITUDE. (SO DOES THE EPHEMERIS ABOVE)

%

% PETER WORCESTER, AS TOLD TO BRUCE CORNUELLE...1983 MAY 27

%

% On 09/11/1988, Peter Worcester gave me the constants for the

% WGS84 spheroid, and he gave A (semi-major axis), F = (A-B)/A

% (flattening) (where B is the semi-minor axis), and E is the

% eccentricity, E = ((A**2 - B**2)**.5)/ A

% the numbers from peter are: A=6378137.; 1/F = 298.257223563

% E = 0.081819191

A = 6378137.;

E = 0.081819191;

B = sqrt(A.^2 - (A*E).^2);

EPS = E*E/(1.-E*E);

NN = max(size(lat));

if (NN ~= max(size(long))),

 error('dist: Lat, Long vectors of different sizes!');

end

if (NN == size(lat))

 rowvec = 0; % it is easier if things are column vectors,

else

 rowvec = 1; % but we have to fix things before returning!

end;

% convert to radians

lat = lat(:)*pi/180;

long = long(:)*pi/180;

147

Argo data management Argo DAC Cookbook

% fixes some nasty 0/0 cases in the geodesics stuff

lat(lat == 0) = eps*ones(sum(lat == 0), 1);

% endpoints of each segment

PHI1 = lat(1:NN-1);

XLAM1 = long(1:NN-1);

PHI2 = lat(2:NN);

XLAM2 = long(2:NN);

% wiggle lines of constant lat to prevent numerical probs.

if (any(PHI1 == PHI2))

 for ii = 1:NN-1

 if (PHI1(ii) == PHI2(ii))

 PHI2(ii) = PHI2(ii) + 1e-14;

 end

 end

end

% wiggle lines of constant long to prevent numerical probs.

if (any(XLAM1 == XLAM2))

 for ii = 1:NN-1

 if (XLAM1(ii) == XLAM2(ii))

 XLAM2(ii) = XLAM2(ii) + 1e-14;

 end

 end

end

% COMPUTE THE RADIUS OF CURVATURE IN THE PRIME VERTICAL FOR EACH POINT

xnu = A./sqrt(1.0-(E*sin(lat)).^2);

xnu1 = xnu(1:NN-1);

xnu2 = xnu(2:NN);

% COMPUTE THE AZIMUTHS.

% A12 (A21) IS THE AZIMUTH AT POINT 1 (2) OF THE NORMAL SECTION CONTAINING THE POINT 2 (1)

TPSI2 = (1.-E*E)*tan(PHI2) + E*E*xnu1.*sin(PHI1)./(xnu2.*cos(PHI2));

PSI2 = atan(TPSI2);

% SOME FORM OF ANGLE DIFFERENCE COMPUTED HERE??

DPHI2 = PHI2-PSI2;

DLAM = XLAM2-XLAM1;

CTA12 = (cos(PHI1).*TPSI2 - sin(PHI1).*cos(DLAM))./sin(DLAM);

A12 = atan((1.)./CTA12);

CTA21P = (sin(PSI2).*cos(DLAM) - cos(PSI2).*tan(PHI1))./sin(DLAM);

A21P = atan((1.)./CTA21P);

% GET THE QUADRANT RIGHT

DLAM2 = (abs(DLAM)<pi).*DLAM + (DLAM>=pi).*(-2*pi+DLAM) + (DLAM<=-pi).*(2*pi+DLAM);

A12 = A12 + (A12<-pi)*2*pi-(A12>=pi)*2*pi;

A12 = A12 + pi*sign(-A12).*(sign(A12) ~= sign(DLAM2));

A21P = A21P + (A21P<-pi)*2*pi - (A21P>=pi)*2*pi;

A21P = A21P + pi*sign(-A21P).*(sign(A21P) ~= sign(-DLAM2));

% A12*180/pi

% A21P*180/pi

SSIG = sin(DLAM).*cos(PSI2)./sin(A12);

% At this point we are OK if the angle < 90 but otherwise

% we get the wrong branch of asin!

% This fudge will correct every case on a sphere, and *almost*

% every case on an ellipsoid (wrong hnadling will be when

% angle is almost exactly 90 degrees)

dd2 = [cos(long).*cos(lat) sin(long).*cos(lat) sin(lat)];

dd2 = sum((diff(dd2).*diff(dd2))')';

if (any(abs(dd2-2) < 2*((B-A)/A))^2),

 disp('dist: Warning...point(s) too close to 90 degrees apart');

end

bigbrnch = dd2>2;

SIG = asin(SSIG).*(bigbrnch==0) + (pi-asin(SSIG)).*bigbrnch;

A21 = A21P - DPHI2.*sin(A21P).*tan(SIG/2.0);

% COMPUTE RANGE

G2 = EPS*(sin(PHI1)).^2;

G = sqrt(G2);

H2 = EPS*(cos(PHI1).*cos(A12)).^2;

H = sqrt(H2);

TERM1 = -SIG.*SIG.*H2.*(1.0-H2)/6.0;

148

Argo data management Argo DAC Cookbook

TERM2 = (SIG.^3).*G.*H.*(1.0-2.0*H2)/8.0;

TERM3 = (SIG.^4).*(H2.*(4.0-7.0*H2)-3.0*G2.*(1.0-7.0*H2))/120.0;

TERM4 = -(SIG.^5).*G.*H/48.0;

range = xnu1.*SIG.*(1.0 + TERM1 + TERM2 + TERM3 + TERM4);

% CONVERT TO DECIMAL DEGREES

A12 = A12*180/pi;

A21 = A21*180/pi;

if (rowvec),

 range = range';

 A12 = A12';

 A21 = A21';

end

12.5.2 Test points

The following table provides results of calculation distances from the LPO distance algorithm.

Test # Longitude point #1
Latitude point

#1
Longitude point #2

Latitude point
#2

Distance (m)

1 59.137 81.450 132.862 -71.971 17452769.38

2 245.057 -75.309 331.764 -77.086 2110391.35

3 185.622 87.327 183.692 -17.999 11689986.02

4 182.640 20.009 49.196 5.048 14227739.39

5 150.579 41.603 208.973 39.188 4868529.07

6 0.000 0.000 332.341 19.629 3717195.47

7 356.228 79.610 254.896 -47.763 15364005.55

8 199.871 88.917 70.224 52.035 4312751.18

9 287.193 -35.107 200.803 52.926 12831368.01

10 102.486 -83.242 312.077 75.131 18753227.55

11 69.797 88.120 207.543 18.708 8087967.56

12 93.492 -16.942 304.265 20.978 16765984.94

13 199.115 -39.885 182.679 60.574 11263499.39

14 303.234 77.720 332.681 -0.149 8830419.21

15 152.391 -4.042 179.072 -21.859 3490115.84

16 38.772 -90.000 252.147 9.952 11097348.67

17 170.518 85.414 311.396 -28.009 13474193.18

18 83.708 44.039 273.558 48.297 9728568.10

19 325.393 4.457 60.402 -18.541 10702629.73

20 201.680 15.173 142.753 -29.194 8013018.54

