SBE 63

Digital Optical Dissolved Oxygen Sensor

SBE 63 DO Sensor
(plastic housing)

SBE 63 DO Sensor
(titanium housing)

Optional Sensor Mount for installation on SeaCAT CTD

User’s Manual
Sea-Bird Electronics, Inc.
13431 NE 20th Street
Bellevue, Washington 98005 USA
Telephone: 425/643-9866
Fax: 425/643-9954
E-mail: seabird@seabird.com
Website: www.seabird.com

Manual Version #004, 01/14/13
Firmware Version 2.0.0 and later
Limited Liability Statement

Extreme care should be exercised when using or servicing this equipment. It should be used or serviced only by personnel with knowledge of and training in the use and maintenance of oceanographic electronic equipment.

SEA-BIRD ELECTRONICS, INC. disclaims all product liability risks arising from the use or servicing of this system. SEA-BIRD ELECTRONICS, INC. has no way of controlling the use of this equipment or of choosing the personnel to operate it, and therefore cannot take steps to comply with laws pertaining to product liability, including laws which impose a duty to warn the user of any dangers involved in operating this equipment. Therefore, acceptance of this system by the customer shall be conclusively deemed to include a covenant by the customer to defend, indemnify, and hold SEA-BIRD ELECTRONICS, INC. harmless from all product liability claims arising from the use or servicing of this system.
Declaration of Conformity

Sea-Bird Electronics, Inc.
13431 NE 20th Street, Bellevue, WA 98005 USA

DECLARATION OF CONFORMITY

Manufacturer's Name: Sea-Bird Electronics
Manufacturer's Address: 13431 NE 20th Street
Bellevue, WA 98005, USA

The Authorized Representative located within the Community is:
OTT MESSTECHNIK GmbH & Co.KG
P.O.Box: 2140 / 87411 Kempen / Germany
Ludwigstrasse 16 / 87437 Kempen
Internet: http://www.olt.com
Phone: +49 831 5617 – 100
Fax: +49 831 5617 - 209

Device Description: Various Data Acquisition Devices and Sensors

Model Numbers:

<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>3S</td>
<td></td>
</tr>
<tr>
<td>3F</td>
<td></td>
</tr>
<tr>
<td>3plus</td>
<td></td>
</tr>
<tr>
<td>4C</td>
<td></td>
</tr>
<tr>
<td>4M</td>
<td></td>
</tr>
<tr>
<td>5T</td>
<td></td>
</tr>
<tr>
<td>5P</td>
<td></td>
</tr>
<tr>
<td>5M</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
<tr>
<td>9plus</td>
<td></td>
</tr>
<tr>
<td>11plus</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
</tr>
<tr>
<td>16plusV2</td>
<td></td>
</tr>
<tr>
<td>16plus-IM V2</td>
<td></td>
</tr>
<tr>
<td>17plus V2</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td></td>
</tr>
<tr>
<td>19plus V2</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td></td>
</tr>
<tr>
<td>25plus</td>
<td></td>
</tr>
<tr>
<td>26plus</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td></td>
</tr>
<tr>
<td>32C</td>
<td></td>
</tr>
<tr>
<td>32SC</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td></td>
</tr>
<tr>
<td>35RT</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td></td>
</tr>
<tr>
<td>37-IM</td>
<td></td>
</tr>
<tr>
<td>39</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td></td>
</tr>
<tr>
<td>41CP</td>
<td></td>
</tr>
<tr>
<td>43</td>
<td></td>
</tr>
<tr>
<td>43F</td>
<td></td>
</tr>
<tr>
<td>44</td>
<td></td>
</tr>
<tr>
<td>37-SI</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td></td>
</tr>
<tr>
<td>39</td>
<td></td>
</tr>
<tr>
<td>39-IM</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td></td>
</tr>
<tr>
<td>41CP</td>
<td></td>
</tr>
<tr>
<td>43</td>
<td></td>
</tr>
<tr>
<td>43F</td>
<td></td>
</tr>
<tr>
<td>44</td>
<td></td>
</tr>
<tr>
<td>45</td>
<td></td>
</tr>
<tr>
<td>49</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td></td>
</tr>
<tr>
<td>52-MP</td>
<td></td>
</tr>
<tr>
<td>53BPR</td>
<td></td>
</tr>
<tr>
<td>54</td>
<td></td>
</tr>
<tr>
<td>55</td>
<td></td>
</tr>
<tr>
<td>56</td>
<td></td>
</tr>
<tr>
<td>63</td>
<td></td>
</tr>
<tr>
<td>SIM</td>
<td></td>
</tr>
<tr>
<td>ICC</td>
<td></td>
</tr>
<tr>
<td>IMM</td>
<td></td>
</tr>
<tr>
<td>PDIM</td>
<td></td>
</tr>
<tr>
<td>AFM</td>
<td></td>
</tr>
<tr>
<td>90488</td>
<td></td>
</tr>
<tr>
<td>90204</td>
<td></td>
</tr>
<tr>
<td>90402</td>
<td></td>
</tr>
<tr>
<td>90504</td>
<td></td>
</tr>
<tr>
<td>Glider Payload CTD</td>
<td>NiMH Battery Charger and Battery Pack</td>
</tr>
</tbody>
</table>

Applicable EU Directives:
Machinery Directive 98 / 37 /EC
EMC Directive 2004 / 108 /EC

Applicable Harmonized Standards:
EN 61326-1:2006 Class A Electrical Equipment for Measurement,
Control, and Laboratory Use, EMC Requirement – Part 1: General
Requirements
(EN 55011:2007 Group 1, Class A)
EN 61010-1:2001, Safety Requirements for Electrical Equipments for
Measurement, Control, and Laboratory Use – Part 1: General
Requirements

Declaration based upon compliance to the Essential Requirements and Letter of Opinion from
CKC Certification Services, LLC., Notified Body 0976

I, the undersigned, hereby declare that the equipment specified above conforms to the above
European Union Directives and Standards.

Authorized Signature: [Signature]
Name: Nordeen Larson
Title of Signatory: President
Date: 27 June 2012
Place: Bellevue, WA
Table of Contents

Limited Liability Statement ...2
Declaration of Conformity ..3
Table of Contents ..4

Section 1: Introduction

- About this Manual ...5
- Quick Start ..5
- Unpacking SBE 63 ..6

Section 2: Description of SBE 63

- System Description ...7
- Specifications ..7
- Dimensions and Connector ..9

Section 3: Preparing SBE 63 for Deployment

- Software Installation ...10
- Power and Communications Test ..10
 - Test Setup ..10
 - Test ..11

Section 4: Deploying and Operating SBE 63

- Sampling Modes ..16
 - Polled Sampling ..16
 - Autonomous Sampling ...18
- Command Descriptions ...20
- Data Formats ..27
- Deployment ...29
 - Integration with SeaCAT CTD
 - (SBE 16plus V2, 16plus-IM V2, or 19plus V2)29
 - Integration with MicroCAT CTD
 - (SBE 37-SMP-ODO, 37-IMP-ODO, 37-SIP-ODO)30
- Recovery ..31

Section 5: Routine Maintenance and Calibration

- Corrosion Precautions ..32
- Connector Mating and Maintenance32
- Sensor Maintenance ..33
- Sensor Calibration ...34

Section 6: Troubleshooting

- Problem 1: Unable to Communicate with SBE 6335
- Problem 2: Unreasonable Data ..35

Glossary

Appendix I: Functional Description ..38
Appendix II: Installation/Removal from Optional Sensor Mount42
Appendix III: Command Summary ..43
Appendix IV: Replacement Parts ..44
Appendix V: Manual Revision History ..45
Index ..46
Section 1: Introduction

This section includes a Quick Start procedure, and photos of a standard SBE 63 shipment.

About this Manual

This manual is to be used with the SBE 63 Digital Optical Dissolved Oxygen Sensor. It is organized to guide the user from installation through operation and data collection. We’ve included detailed specifications, command descriptions, maintenance and calibration information, and helpful notes throughout the manual.

Sea-Bird welcomes suggestions for new features and enhancements of our products and/or documentation. Please contact us with any comments or suggestions (seabird@seabird.com or 425-643-9866). Our business hours are Monday through Friday, 0800 to 1700 Pacific Standard Time (1600 to 0100 Universal Time) in winter and 0800 to 1700 Pacific Daylight Time (1630 to 0000 Universal Time) the rest of the year.

Quick Start

Follow these steps to get a Quick Start using the SBE 63. The manual provides step-by-step details for performing each task:

1. Perform pre-check procedures (see Section 3: Preparing SBE 63 for Deployment):
 A. Test power and communications.

2. Deploy the SBE 63 (see Section 4: Deploying and Operating SBE 63):
 A. Establish setup and operating parameters.
 B. Check status (GetSD) and calibration coefficients (GetCC) to verify setup.
 C. Install I/O cable connector and locking sleeve, and mount SBE 63.
 D. Deploy SBE 63.
Unpacking SBE 63

Shown below is a typical SBE 63 shipment.

SBE 63 (plastic housing)

SBE 63 (titanium housing)

Optional sensor mount for installation on SBE 16plus V2, 16plus-IM V2, or 19plus V2

Section 2: Description of SBE 63

This section describes the functions and features of the SBE 63, including specifications and dimensions.

System Description

The SBE 63 is an easy-to-use, light, compact instrument ruggedly made of titanium and other low-maintenance (plastic) materials, designed to be incorporated into oceanographic sensing systems at depths up to 600, 2000, or 7000 meters (1960, 6560, or 23,000 feet). Commands sent to the SBE 63 provide status display, data acquisition setup, and diagnostic tests. Its data is telemetered by its internal, 3-wire, RS-232C interface. The SBE 63 has no sample memory or internal batteries.

The SBE 63 samples in two modes:

- **Autonomous sampling** – The SBE 63 samples at pre-programmed intervals of 1 to 32,767 seconds. It can be set to average up to 255 measurements per sample, and transmits the averaged data. The SBE 63 can be programmed to begin autonomous sampling when power is applied or on command.

- **Polled sampling** – On command, the SBE 63 takes one sample and transmits the data.

The SBE 63 outputs raw or converted (ASCII engineering units) data in one of a number of formats, for compatibility with existing CTDs.

Each SBE 63 is calibrated individually in a temperature-controlled bath. Bath temperatures are varied at each of 4 oxygen values, providing a comprehensive 24-point calibration. Two reference sensors in each bath are standardized against Winkler titrations. Response time tests are conducted on each sensor, using gas. Salinity and pressure impacts on sensor response are each checked at two separate points.

The SBE 63 is designed for use in a CTD's pumped flow path. Water does not freely flow through the plumbing between samples, allowing anti-foul concentration inside the system to maintain saturation and eliminating exposure of the sensor to light, maximizing bio-fouling protection. The elapsed time between the CTD and associated oxygen measurement is easily quantified, and corrected for in post-processing.

Configuration options:

- With the optional sensor mount, the SBE 63 can be plugged into the RS-232 auxiliary sensor connector of the SBE 16plus V2, 16plus-IM V2, or 19plus V2 SeaCAT CTD. Configuration choices include a 600-meter plastic housing or 7000-meter titanium housing, and an XSG or wet-pluggable MCBH connector.

- The SBE 63 with a 600-meter plastic or 7000-meter titanium housing can be integrated into an SBE 37 MicroCAT (37-IMP-ODO, 37-SMP-ODO, or 37-SIP-ODO).

- On an SBE 41 (Argo float) CTD, the SBE 63 has a 2000-meter titanium housing. The SBE 63 is physically integrated with the CTD; however, electronic operation of the SBE 63 requires an RS-232 interface in the float controller.
The SBE 63 is supplied with a powerful Windows software package, Seasoft V2, which includes:

- **SeatermV2** - terminal program for communication and data retrieval. SeatermV2 is a *launcher*, and launches the appropriate terminal program for the selected instrument (*Seaterm232* for RS-232 instruments such as this SBE 63).
- **Seasave V7** – program for acquiring, converting, and displaying real-time or archived raw data.
- **SBE Data Processing** – program for calculation and plotting of conductivity, temperature, pressure, auxiliary sensor data (such as dissolved oxygen), and derived variables such as salinity and sound velocity.

Specifications

<table>
<thead>
<tr>
<th>Measurement Range</th>
<th>120% of surface saturation in all natural waters, fresh and salt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial Accuracy</td>
<td>Larger of ±3 µmol/kg (equivalent to 0.07 ml/L or 0.1 mg/L) or ±2%</td>
</tr>
<tr>
<td>Resolution</td>
<td>0.2 µmol/kg</td>
</tr>
<tr>
<td>Sample-Based Drift</td>
<td>< 1 µmol/kg / 100,000 samples (20 °C)</td>
</tr>
<tr>
<td>Response Time</td>
<td>< 6 sec (20 °C)</td>
</tr>
<tr>
<td>Sampling Speed</td>
<td>1 Hz (1 sample/sec)</td>
</tr>
<tr>
<td>Calibration</td>
<td>Each sensor fully and individually calibrated (0 – 450 µmol/kg oxygen, 0 – 30 °C, 0 – 35 psu, 0 – 2000 dbars) 8 coefficients plus 4 temperature compensation coefficients</td>
</tr>
<tr>
<td>Input Power</td>
<td>6 - 24 VDC, 35 mA (0.2 J/sample)</td>
</tr>
<tr>
<td>Output Signal</td>
<td>RS-232, 600-115,200 baud (user-selectable), 8 data bits, no parity, 1 stop.</td>
</tr>
<tr>
<td>Depth rating, housing, and weight (in air)</td>
<td>Sensor: 600 m (1960 ft) plastic housing: 245 g (0.54 lbs) 2000 m (6560 ft) titanium housing: 235 g (0.52 lbs) 7000 m (16,400 ft) titanium housing: 270 g (0.60 lbs) Optional sensor mount for use with SBE 16plus V2, 16plus-IM V2, or 19plus V2: 225 g (0.50 lbs)</td>
</tr>
</tbody>
</table>

Notes:
- Help files provide detailed information on the software.
- A separate software manual on CD-ROM contains detailed information on the setup and use of Seasave V7 and SBE Data Processing.
- Sea-Bird supplies the current version of our software when you purchase an instrument. As software revisions occur, we post the revised software on our FTP site. See our website (www.seabird.com) for the latest software version number, a description of the software changes, and instructions for downloading the software from the FTP site.
Dimensions and Connector

SBE 63 sensor for integration with SBE 37 ODO MicroCAT (600 m or 7000 m housing), or SBE 41 (Argo) CTD (2000 m housing)

SBE 63 sensor installed in sensor mount, for use with RS-232 auxiliary sensor channel on CTD (SBE 16plus V2, 16plus-IM V2, or 19plus V2 SeaCAT)

<table>
<thead>
<tr>
<th>Pin</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ground</td>
</tr>
<tr>
<td>2</td>
<td>RS-232 Receive</td>
</tr>
<tr>
<td>3</td>
<td>RS-232 Transmit</td>
</tr>
<tr>
<td>4</td>
<td>Power (6 - 24 VDC)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Housing</th>
<th>Dimension (mm)</th>
<th>Dimension (in)</th>
</tr>
</thead>
<tbody>
<tr>
<td>600 m</td>
<td>77</td>
<td>3.04</td>
</tr>
<tr>
<td>2000 m</td>
<td>65</td>
<td>2.55</td>
</tr>
<tr>
<td>7000 m</td>
<td>68</td>
<td>2.69</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Diameter</th>
<th>Dimension (mm)</th>
<th>Dimension (in)</th>
</tr>
</thead>
<tbody>
<tr>
<td>59</td>
<td>2.34</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>1.43</td>
<td></td>
</tr>
<tr>
<td>59</td>
<td>2.34</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>1.43</td>
<td></td>
</tr>
<tr>
<td>600 m</td>
<td>107</td>
<td>4.22</td>
</tr>
<tr>
<td>2000 m</td>
<td>95</td>
<td>3.74</td>
</tr>
<tr>
<td>7000 m</td>
<td>96</td>
<td>3.78</td>
</tr>
</tbody>
</table>
Section 3: Preparing SBE 63 for Deployment

This section describes installing software and testing power and communications.

Software Installation

Notes:
- Help files provide detailed information on the software.
- It is possible to use the SBE 63 without the SeatermV2 terminal program by sending direct commands from a dumb terminal or terminal emulator, such as Windows HyperTerminal.
- Sea-Bird supplies the current version of our software when you purchase an instrument. As software revisions occur, we post the revised software on our FTP site. See our website (www.seabird.com) for the latest software version number, a description of the software changes, and instructions for downloading the software from the FTP site.

Seasoft V2 was designed to work with a PC running Windows XP service pack 2 or later, Windows Vista, or Windows 7.

If not already installed, install SeatermV2 and other Sea-Bird software programs on your computer using the supplied software CD:

1. Insert the CD in your CD drive.
2. Install software: Double click on `SeasoftV2_date.exe` (where `date` is the date that version of the software was created). Follow the dialog box directions to install the software. The installation program allows you to install the desired components. Install all the components, or just install SeatermV2, Seasave V7, and SBE Data Processing.

The default location for the software is `c:\Program Files\Sea-Bird`. Within that folder is a sub-directory for each program.

Power and Communications Test

Note:
SBE 63 integrated with a MicroCAT (37-SMP-ODO, IMP-ODO, SIP-ODO): See the MicroCAT manual for information on communicating with the SBE 63 through the MicroCAT.

The power and communications test will verify that the system works, prior to deployment.

Test Setup

1. Remove dummy plug (if applicable):
 A. By hand, unscrew the locking sleeve from the SBE 63’s bulkhead connector. **If you must use a wrench or pliers, be careful not to loosen the bulkhead connector instead of the locking sleeve.**
 B. Remove the dummy plug from the SBE 63’s I/O bulkhead connector by pulling the plug firmly away from the connector.

2. **Standard Connector** - Install the I/O cable connector, aligning the raised bump on the side of the connector with the large pin (pin 1 - common) on the SBE 63 sensor mount. **OR**
 MCBH Connector – Install the I/O cable connector, aligning the pins.

3. Connect the I/O cable connector to your computer’s serial port.

4. Connect the I/O cable connector’s red (+) and black (-) wires to a power supply (6 – 24 VDC).
1. Double click on **SeatermV2.exe**. The main screen looks like this:

SeatermV2 is a *launcher*. Depending on the instrument selected, it launches Seaterm232 (RS-232 instruments), Seaterm485 (RS-485 instruments), or SeatermIM (inductive modem instruments).

2. In the Instruments menu, select **SBE 63 Dissolved Oxygen Sensor**. **Seaterm232** opens; the main screen looks like this:

- **Menus** – For tasks and frequently executed instrument commands.
- **Send Commands window** – Contains commands applicable to your SBE 63. The list appears after you connect to the SBE 63.
- **Command/Data Echo Area** – Title bar of this window shows Seaterm232’s current comm port and baud rate. Commands and the SBE 63 responses are echoed here. Additionally, a command can be manually typed or pasted (ctrl + V) here. Note that the SBE 63 must be *connected* and *awake* for it to respond to a command.
- **Status bar** – Provides connection, script, and capture status information.

Test

Notes:
- You can use any terminal program to set up the SBE 63; set it to 8 data bits, no parity, 1 stop bit, and 9600 baud (default SBE 63 baud rate). Instructions here are for using SeatermV2.
- See SeatermV2’s Help files.

Note:
See Seaterm232’s Help files.
Following is a description of the menus:

<table>
<thead>
<tr>
<th>Menu</th>
<th>Description</th>
<th>Equivalent Command*</th>
</tr>
</thead>
</table>
| **File** | • Load command file – opens selected .XML command file, and fills Send Commands window with commands
 • Unload command file – closes command file, and removes commands from Send Commands window
 • Exit - Exit program. | — |
| **Communications** | • Connect – connect to comm port
 • Disconnect – disconnect from comm port
 • Configure – Establish communication parameters (comm port and baud rate).
 • Disconnect and reconnect – may be useful if SBE 63 has stopped responding | — |
| **Command** | • Abort – interrupt and stop SBE 63 response
 • Send stop command
 Remaining menu items are not applicable to SBE 63 | • (press Esc key)
 • Stop |
| **Capture** | Capture SBE 63 responses on screen to file, to save real-time data or use for diagnostics. File has .cap extension. Click Capture again to turn off capture. Capture status displays in Status bar. | — |
| **Upload** | Not applicable to SBE 63 | — |
| **Tools** | • Diagnostics log - Keep a diagnostics log.
 • Convert .XML data file – not applicable to SBE 63
 • Send script – Send XML script to SBE 63. May be useful if you have a number of SBE 63s to program with same setup. | — |

*See Command Descriptions in Section 4: Deploying and Operating SBE 63.
3. If this is the first time Seaterm232 is being used, the Serial Port Configuration dialog box displays:

Make the desired selections, and click OK.

Note:
Seaterm232’s baud rate must be the same as the SBE 63 baud rate (set with SetBaud=). Baud is factory-set to 9600, but can be changed by the user (see Command Descriptions in Section 4: Deploying and Operating SBE 63). Other communication parameters – 8 data bits, 1 stop bit, and no parity – cannot be changed.

4. Seaterm232 tries to automatically connect to the SBE 63. As it connects, it sends GetHD and displays the response, which provides factory-set data such as instrument type, serial number, and firmware version. Seaterm232 also fills the Send Commands window with the correct list of commands for your SBE 63.

If there is no communication:
A. In the Communications menu, select Configure. The Serial Port Configuration dialog box appears. Select the Comm port and baud rate for communication, and click OK. Note that the factory-set baud rate is documented on the Configuration Sheet.
B. In the Communications menu, select Connect (if Connect is grayed out, select Disconnect and reconnect). Seaterm232 will attempt to connect at the baud specified in Step A, but if unsuccessful will then cycle through all other available baud rates.
C. If there is still no communication, check cabling between the computer and SBE 63, and try to connect again.
D. If there is still no communication, repeat Step A with a different comm port, and try to connect again.

After Seaterm232 displays the GetHD response, it provides an S> prompt to indicate it is ready for the next command.
Taking a look at the Send Commands window:

You can use the Send Commands window to send commands, or simply type the commands in the Command/Data Echo area if desired.
5. Display SBE 63 setup and hardware information by typing `GetHD` and pressing the Enter key. The display looks like this:

```
<HardwareData DeviceType = 'SBE063' SerialNumber = '0013'>
<Manufacturer>Sea-Bird Electronics, Inc.</Manufacturer>
<FirmwareVersion>2.0.0 Sep 27 2012 16:32:38</FirmwareVersion>
<MPGDDate>04617</MPGDDate>
<PCBAssembly>41755</PCBAssembly>
<PCBSerialNum>00013</PCBSerialNum>
<PCBAssembly>41756</PCBAssembly>
<PCBSerialNum>00013</PCBSerialNum>
<FilmSerialNum>00077</FilmSerialNum>
<Supply Voltage>8.63</Supply Voltage>
<LoaderVersion>SBE 63 FirmwareLoader V 1.0</LoaderVersion>
<CalibrationDate>04653</CalibrationDate>
<HardwareConfig>
  <BaudRate>009600</BaudRate>
  <BlueOnTime>000000</BlueOnTime>
  <SampleAvg>002</SampleAvg>
  <SampleInterval>00002</SampleInterval>
  <BootDelay>001</BootDelay>
  <OutFormat>00</OutFormat>
  <AnalogGain>2</AnalogGain>
  <AnalogOffset>06</AnalogOffset>
  <AutoRun>0</AutoRun>
  <BlueTupdate>0</BlueTupdate>
  <SerPause>1</SerPause>
  <Flags>0x0001</Flags>
</HardwareConfig>
</HardwareData>
```

6. Command the SBE 63 to take a sample by typing `TS` and pressing the Enter key. The display looks like this (if SBE 63 is set up with `SetFormat=0`):

```
4.3019 ml/l, 25.2556 C
where 04.3109 = dissolved oxygen in ml/l
       25.2556 = temperature in deg C
```

The SBE 63 is ready for programming and deployment.
Section 4: Deploying and Operating SBE 63

This section provides instructions for deploying the SBE 63. It includes:

- Sampling modes, including example sets of commands
- Command descriptions
- Data output formats
- Deployment
- Recovery

Sampling Modes

The SBE 63 has two sampling modes for obtaining data:

- Polled Sampling
- Autonomous Sampling

Shown below are descriptions and examples of the two sampling modes. Note that the SBE 63’s response to each command is not shown in the examples. Review the operation of the sampling modes and the commands described in Command Descriptions before setting up your system.

Polled Sampling

On command (TS or TSR), the SBE 63 takes one sample of data and transmits the data.

Example 1: Polled Sampling (user input in bold).

Set up to wait for a command upon power up (SetAutoRun=0). Set up to output converted oxygen and temperature data (SetFormat=0), and average 2 measurements/sample (SetAvg=2). Verify setup with status (GetHD) command. Remove power.

(Apply power, then select Connect in Seaterm232’s Communications menu to connect and wake up.)

S> SETAUTORUN=0
S> SETFORMAT=0
S> SETAVG=2
S> GETHD (to verify setup)
(Remove power.)

When ready to take a sample (repeat as desired): apply power, establish communications with SBE 63, command it to take a sample and output data in format established with SetFormat=, and remove power.

(Apply power, then select Connect in Seaterm232’s Communications menu to connect and wake up.)

(Before first sample, click Capture menu to capture data to a file – Seaterm232 requests file name for data to be stored.)

S> TS
(Remove power.)

Examples continued on next page
Example 2: **Polled Sampling with SBE 16plus V2** (user input in bold).
Set up to wait for a command upon power up (**SetAutoRun=0**). Set up to average 2 measurements per output sample (**SetAvg=2**), and output data in a format compatible with 16plus V2 (**SetFormat=1**). Set SBE 63 baud rate to same baud as 16plus V2 (assume 9600 baud for this example).
Verify setup with status (**GetHD**) command. Remove power.
(Apply power to SBE 63, then select Connect in Seaterm232’s Communications menu to connect to and wake up SBE 63.)

S> **SETAUTORUN=0**
S> **SETAVG=2**
S> **SETFORMAT=1**
SB> **SETBAUD=9600** (get message to re-enter baud)

(In Seaterm232’s Communications menu, select Configure. Change baud to 9600 and click OK. In Seaterm232’s Communications menu, select disconnect and reconnect. You will now be communicating at new baud.)
S> **GETHD** (to verify setup)
(Remove power from SBE 63.)

When ready to begin sampling: Connect SBE 63 to 16plus V2 RS-232 auxiliary sensor connector. Start autonomous sampling in 16plus V2 (see 16plus V2 manual). Each time SBE 16plus V2 takes a measurement, it applies power to and requests a sample from SBE 63 using **TS** command.

When ready to stop sampling: Stop autonomous sampling in 16plus V2.

Example 3: **Polled Sampling with SBE 41 (Argo float) CTD that is not making continuous oxygen measurements** (user input in bold).
Set up to wait for a command upon power up (**SetAutoRun=0**). Set up to output raw and converted oxygen and temperature data (**SetFormat=1**), to average 2 measurements/sample (**SetAvg=2**). Verify setup with status (**GetHD**) command. Remove power.
(Apply power, then select Connect in Seaterm232’s Communications menu to connect and wake up.)
S> **SETAUTORUN=0**
S> **SETFORMAT=1**
S> **SETAVG=2**
S> **GETHD** (to verify setup)
(Remove power.)

When ready to begin sampling: Connect SBE 63 to SBE 41. Each time SBE 41 takes an oxygen measurement, it applies power to and requests a sample from SBE 63 using **TS** command.

Note:
When using the SBE 63 with an SBE 16plus V2, 16plus-IM V2, or 19plus V2 CTD, the following setup in the **SBE 63** is required:
- **SetBaud=** to the baud rate set in the CTD (1200 for the 16plus-IM V2)
- **SetFormat=1**
- **SetAvg=1 to 16; recommended value is 2**
- **SetAutoRun=0**

In the CTD, set:
- Pump mode to 2 (**PumpMode=2**).
- Delay before sampling (**DelayBeforeSampling**) to 25 sec at 15 °C to 40 sec at 0 °C (linear interpolation between those values). This provides enough time for the SBE 63 to equilibrate after pumping begins, before the measurement is made.

In the CTD, the interval between samples (**SampleInterval**) must be greater than or equal to the sum of the times required to sample. Total time is affected by the following:
- Minimum time required for CTD to take a sample (≈ 2.5 sec).
- Time required for integration of optional Quartz pressure sensor (**ParosIntegration**)—time required for CTD to take and average **NCycles** samples; samples are taken 0.25 sec apart.
- Delay after providing power to external sensors before sampling (**DelayBeforeSampling**); described above.
- Delay after sampling before turning off power to external sensors (**DelayAfterSampling**).

For the 16plus-IM V2, commands are preceded by **#ii** (ii=ID).
Autonomous Sampling

The SBE 63 does not have an internal (standby) real-time clock. Therefore, once you start autonomous sampling, power to the SBE 63 must remain on for autonomous sampling to continue at the specified interval.

SetAutoRun defines how sampling starts:

<table>
<thead>
<tr>
<th>SetAutoRun=</th>
<th>To Start Autonomous Sampling</th>
<th>To Stop Autonomous Sampling</th>
</tr>
</thead>
</table>
| 0 (default) | Send Start. | • Turn off power, or
| | | • Click Esc (stopping this way allows you to then send commands to check/modify the setup), or
| 1 | Turn on power. | • Send Stop (stopping this way allows you to then send commands to check/modify the setup). |

Example 1: Autonomous Sampling Setup for SetAutoRun=0 (user input in bold).
Set up to wait for a command upon power up (SetAutoRun=0). Set up to take and output a sample every 10 seconds, averaging 2 measurements per output sample (SetAvg=2), and output converted oxygen and temperature data (SetFormat=0). Verify setup with status (GetHD) command. Remove power.
(Apply power, then select Connect in Seaterm232’s Communications menu to connect and wake up.)
S> SETHD

When ready to begin sampling:
(Apply power, then select Connect in Seaterm232’s Communications menu to connect and wake up.)
S> START

When ready to stop sampling:
(Send Stop, click Esc, or remove power.)

Examples continued on next page
Example 2: *Autonomous Sampling Setup for SetAutoRun=1* for use with power supply and logger.

Set up to start sampling when power is applied (SetAutoRun=1).
Set up to take samples at 10 second intervals (SetInterval=10), average 2 measurements per output sample (SetAvg=2), output converted oxygen and temperature data (SetFormat=0), and set the delay before sampling to the minimum value (SetBootDelay=1). Verify setup with status (GetHD) command. Remove power.

(Apply power, then select Connect in Seaterm232’s Communications menu to connect and wake up.)

S> SETAUTORUN=1
S> SETINTERVAL=10
S> SETAVG=2
S> SETFORMAT=0
S> SETBOOTDELAY=1
S> GETHD (to verify setup)
(Remove power from SBE 63.)

When ready to begin sampling, connect SBE 63 to power supply and data logger.
(Apply power – SBE 63 automatically begins sampling at 10-second intervals.)

When ready to stop sampling:
(remove power.)
Command Descriptions

This section describes commands and provides sample outputs. See Appendix III: Command Summary for a summarized command list.

When entering commands:

- Input commands to the SBE 63 in upper or lower case letters and register commands by pressing the Enter key (0xD).

- Commands to enable a parameter can be entered with the argument as Y or 1 for yes, and N or 0 for no (for example, `SetAutoRun=y` and `SetAutoRun=1` are equivalent; both enable automatic starting of sampling when power is applied).

- The SBE 63 sends `Command failed: Unknown command` if an invalid command is entered.

- If the SBE 63 does not return an `S>` prompt after executing a command, press the Enter or Esc key to get the `S>` prompt.

- If the SBE 63 is transmitting data and you want to stop it, press the Esc key or send `Stop`. Alternatively, remove power.

- All commands that change setup take effect immediately, and are committed to nonvolatile storage (SBE 63 retains settings when power is removed).
Status Command

GetSD

Get and display status data, which includes all parameters related to setup of SBE 63 that can be input/modified. Many of these are not intended for modification by users, and are programmed at the factory.

List and example below include commands used to modify user-programmable parameters:

- Instrument type and serial number
- SBE 63 firmware version
- Software used to upload firmware to SBE 63
- Calibration date (days since January 1, 2000)
- Communication baud rate

 \[\text{SetBaud}=\]
- Blue LED counter total on-time (sec)
- Number of measurements to average per sample \[\text{SetAvg}=\]
- Interval between samples for autonomous sampling \[\text{SetInterval}=\]
- Delay before sampling after power is applied \[\text{SetBootDelay}=\]
- Data output format \[\text{SetFormat}=\]
- Analog gain and offset
- Begin sampling automatically when power applied \[\text{SetAutoRun}=\]?
- Update Blue LED counter with every sample?
- Serial pause (factory set; must be 1 for use with SBE 19plus V2 in Profiling mode, 16plus-IM V2, or 37-IMP-ODO); can be 0 or 1 for other integrations.
- Internally calculated [based on \text{SetAutoRun}= and factory settings]

Example: (user input in bold)

S\textgreater getsd

\[
\begin{align*}
\text{<StatusData DeviceType} & \text{='SBE063' SerialNumber} = \text{='0013'}> \\
\text{<FirmwareVersion} & \text{='2.0.0 Sep 27 2012 16:32:38'>} \\
\text{<LoaderVersion} & \text{='SBE 63 FirmwareLoader V 1.0'>} \\
\text{<CalibrationDate} & \text{='04653'>} \\
\text{<BaudRate} & \text{='009600'>} \\
\text{<BlueOnTime} & \text{='000000'>} \\
\text{<SampleAvg} & \text{='002'>} \\
\text{<SampleInterval} & \text{='00002'>} \\
\text{<BootDelay} & \text{='001'>} \\
\text{<OutFormat} & \text{='02'>} \\
\text{<AnalogGain} & \text{='2'>} \\
\text{<AnalogOffset} & \text{='06'>} \\
\text{<AutoRun} & \text{='0'>} \\
\text{<BlueTupdate} & \text{='0'>} \\
\text{<SerPause} & \text{='1'>} \\
\text{<Flags} & \text{='0x0001'>} \\
\text{</HardwareConfig>}
\end{align*}
\]

[internally calculated, based on \text{SetAutoRun}= and factory settings]
GetHD

Get and display hardware data. Many of these parameters are not intended for modification by customers, and are programmed at the factory. List and example include commands used to modify user-programmable parameters:

- Instrument type and serial number
- Manufacturer
- SBE 63 firmware revision
- SBE 63 manufacture date
- PCB assembly and serial numbers
- Optical film serial number
- Power supply voltage seen by SBE 63
- Software used to upload firmware to SBE 63
- Calibration date (days since January 1, 2000)
- Communication baud [SetBaud=]
- Blue LED counter total on-time (sec)
- Number of measurements to average per sample [SetAvg=]
- Interval between samples for autonomous sampling [SetInterval=]
- Delay before sampling after power is applied [SetBootDelay=]
- Data output format [SetFormat=]
- Analog gain and offset
- Begin sampling automatically when power applied [SetAutoRun=]
- Update Blue LED counter with each sample?
- Serial pause (factory set; must be 1 for use with SBE 19 plus V2 in Profiling mode, 16 plus-IM V2, or 37-IMP-ODO); can be 0 or 1 for other integrations.
- Internally calculated [based on SetAutoRun= and factory settings]

Example: (user input in bold)

S> gethd
<HardwareData DeviceType = 'SBE063' SerialNumber = '0013'>
<Manufacturer>Sea-Bird Electronics, Inc.</Manufacturer>
<FirmwareVersion>2.0.0 Sep 27 2012 16:32:38</FirmwareVersion>
<MFGDate>04617</MFGDate>
<PCBAssembly>41755</PCBAssembly>
<PCBSerialNum>00013</PCBSerialNum>
<PCBAssembly>41756</PCBAssembly>
<PCBSerialNum>00013</PCBSerialNum>
<FilmSerialNum>00001</FilmSerialNum>
<Supply Voltage>8.63</Supply Voltage>
<LoaderVersion>SBE 63 FirmwareLoader V 1.0</LoaderVersion>
<CalibrationDate>04653</CalibrationDate>
<HardwareConfig>
 <BaudRate>009600</BaudRate>
 <BlueOnTime>000000</BlueOnTime>
 <SampleAvg>02</SampleAvg>
 <SampleInterval>00002</SampleInterval>
 <BootDelay>001</BootDelay>
 <OutFormat>02</OutFormat>
 <AnalogGain>2</AnalogGain>
 <AnalogOffset>06</AnalogOffset>
 <AutoRun>0</AutoRun>
 <BlueTupdate>0</BlueTupdate>
 <SerPause>1</SerPause>
 <Flags>0x0001</Flags>
</HardwareConfig>
</HardwareData>
<Executed>
GetCC

Get and display calibration coefficients, which are initially factory-set and should agree with Calibration Certificate shipped with SBE 63. Example below includes, where applicable, command used to modify parameter.

- `<CalDate>` is number of days since January 1, 2000.
- `SetRefSal=` and `SetRefP=` are set by user; see description below in *Calibration Coefficients* section of these command descriptions.

Example: (user input in bold)

```xml
S>getcc
<CalibrationCoefficients DeviceType = 'SBE063' SerialNumber = '0013'>
  <Calibration format = 'TEMP1' id = 'Temperature'>
    <SerialNum>06300013</SerialNum>
    <CalDate>04653</CalDate>
    <A0>+5.593530e-04</A0> [SetTA0=]
    <A1>+2.756939e-04</A1> [SetTA1=]
    <A2>-1.453041e-06</A2> [SetTA2=]
    <A3>+1.535286e-07</A3> [SetTA3=]
  </Calibration>
  <Calibration format = 'OX1' id = 'OptOxygen'>
    <SerialNum>06300013</SerialNum>
    <CalDate>653</CalDate>
    <A0>+8.900000e-01</A0> [SetA0=]
    <A1>-1.520000e-03</A1> [SetA1=]
    <A2>+0.000000e+00</A2> [SetA2=]
    <B0>-1.820000e-01</B0> [SetB0=]
    <B1>+1.086300e+00</B1> [SetB1=]
    <B2>+0.000000e+00</B2> [SetB2=]
    <B3>+1.737200e-01</B3> [SetB3=]
    <C0>+1.737200e-01</C0> [SetC0=]
    <C1>+6.545500e-03</C1> [SetC1=]
    <C2>+8.945700e-05</C2> [SetC2=]
    <C3>-2.600000e-03</C3> [SetC3=]
    <SOLB0>-6.245230e-03</SOLB0> [SetSolB0=]
    <SOLB1>-7.376141e-03</SOLB1> [SetSolB1=]
    <SOLB2>-1.034100e-02</SOLB2> [SetSolB2=]
    <SOLB3>-8.170830e-03</SOLB3> [SetSolB3=]
    <SOLC0>-4.886820e-07</SOLC0> [SetSolC0=]
    <REFSALpsu>+0.000000e+00</REFSALpsu> [SetRefSal=]
    <REFPRESSdbar>+0.000000e+00</REFPRESSdbar> [SetRefP=]
  </CalibrationCoefficients>
<Executed>
```
Setup Commands

SetBaud=x

- x= baud rate (600, 1200, 2400, 4800, 9600, 19200, 38400, 57600, or 115200). **Default 9600.** Check capability of your computer and terminal program before increasing baud rate; high baud rates require a short cable and good PC serial port with accurate clock. SBE 63 requires you to enter command twice to confirm.

SetFormat=x

- Data output format (see *Data Formats* for details):
 - x=0: Converted oxygen and temperature (with units).
 - x=1: Raw phase delay and thermistor voltage, converted oxygen and temperature (no units), for compatibility with SBE 41 (Argo) CTD, SeaCATs (16 plus V2, 16 plus-IM V2, 19 plus V2), and MicroCATs (37-SMP-ODO, 37-IMP-ODO, 37-SIP-ODO). **Default.**
 - x=2: Raw and converted data.
 - x=3: Instrument name, serial number, and converted oxygen.

SetBootDelay=x

- x= delay after power is applied before sampling (1 - 255 sec). **Default 1.** Only applicable if *AutoRun*=1.

SetInterval=x

- x= interval between samples (1 – 32,767 sec) for autonomous sampling (if power remains on, and *Start* has been sent or *AutoRun*=1). **Default 4.**

SetAvg=x

- x = number of measurements to take and average per sample (1–64, or 1–32 for 1Hz sampling); **default 2.** Each additional measurement adds approximately 0.03 sec. Increasing *SetAvg* shortens sensor film life and increases photo-bleaching effects. **Sea-Bird recommends SetAvg=2 for best results,** to prevent calibration shifts caused by film heating and photo bleaching-effects.

Note:

When communicating directly with the SBE 63, the SBE 63’s baud rate (set with *SetBaud=*) must be the same as Seaterm232’s baud rate (set in the Communications menu).

When using the SBE 63 with an SBE 16 plus V2, 16 plus-IM V2, or 19 plus V2 CTD, the following setup in the SBE 63 is required:
- *SetBaud=* to the baud rate set in the CTD (1200 for the 16plus-IM V2)
- *SetFormat=*1
- *SetAvg=*1 to 16; recommended value is 2
- *SetAutoRun=*0

In the CTD, set:
- Pump mode to 2 (*PumpMode=2*).
- Delay before sampling (*DelayBeforeSampling=*) to 25 sec at 15 °C to 40 sec at 0 °C (linear interpolation between those values). This provides enough time for the SBE 63 to equilibrate after pumping begins, before the measurement is made.

In the CTD, the interval between samples (*SampleInterval=*) must be greater than or equal to the sum of the times required to sample. Total time is affected by the following:
- Minimum time required for CTD to take a sample (= 2.5 sec).
- Time required for integration of optional Quartz pressure sensor (*ParosIntegration=*).
- Time required for CTD to take and average NCycles= samples; samples are taken 0.25 sec apart.
- Delay after providing power to external sensors before sampling (*DelayBeforeSampling=*); described above.
- Delay after sampling before turning off power to external sensors (*DelayAfterSampling=*).

For the 16plus-IM V2, commands are preceded by #ii (ii=ID).

Example: (user input in bold).

S> setbaud=19200
Baud change requested.
Re-enter setbaud command at OLD baudrate to confirm
SB> setbaud=19200
(may then show garbage characters, because of baud rate change)
(In Seaterm232’s Communications menu, select Configure. Change baud to 19200 and click OK. In Seaterm232’s Communications menu, select Disconnect and reconnect).

S> (now communicating at 19200 baud)
Setup Commands (continued)

SetAutoRun=x

x=0: Wait for command when power applied. Default. Required setting for use with SBE 41 (Argo) CTD, SeaCATs (16 plus V2, 16 plus -IM V2, 19 plus V2), and MicroCATs (37-SMP-ODO, 37-IMP-ODO, 37-SIP-ODO)

x=1: Begin sampling when power applied. First sample taken after SetBootDelay=.

*Default

Reset most Setup parameters to their factory defaults (SetFormat=, SetBootDelay=, SetInterval=, SetAvg=, SetAutoRun=).

Note that baud (SetBaud=) is not reset.

Sampling Commands

Start or Go

Start autonomous sampling immediately at rate set by SetInterval=, and output data in format defined by SetFormat=.

Applicable if:
• SetAutoRun=0, or
• SetAutoRun=1, and you previously clicked Esc to stop sampling.

To stop sampling:
• Click Esc or send Stop command.
 Once sampling is stopped and terminal program shows S> prompt, you can send desired commands (setup, status, etc.).
 OR
 • Remove power.

Stop

Stop autonomous sampling. Command will not be echoed if autonomous sampling is taking place. S> prompt appears to signal that autonomous sampling has stopped.

TS

Take 1 sample and transmit data in format defined by SetFormat=.

TSR

Take 1 sample and transmit data in raw format (for factory diagnostics).
Calibration Coefficients Commands

With the exception of `SetRefSal=` and `SetRefP=`, calibration coefficients are initially factory-set and should agree with Calibration Certificate shipped with the SBE 63.

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>SetCalDate=S</code></td>
<td>Calibration date (days since January 1, 2000).</td>
</tr>
<tr>
<td><code>SetTA0=F</code></td>
<td>F = TA0 coefficient.</td>
</tr>
<tr>
<td><code>SetTA1=F</code></td>
<td>F = TA1 coefficient.</td>
</tr>
<tr>
<td><code>SetTA2=F</code></td>
<td>F = TA2 coefficient.</td>
</tr>
<tr>
<td><code>SetTA3=F</code></td>
<td>F = TA3 coefficient.</td>
</tr>
<tr>
<td><code>SetA0=F</code></td>
<td>F = A0 coefficient.</td>
</tr>
<tr>
<td><code>SetA1=F</code></td>
<td>F = A1 coefficient.</td>
</tr>
<tr>
<td><code>SetA2=F</code></td>
<td>F = A2 coefficient.</td>
</tr>
<tr>
<td><code>SetB0=F</code></td>
<td>F = B0 coefficient.</td>
</tr>
<tr>
<td><code>SetB1=F</code></td>
<td>F = B1 coefficient.</td>
</tr>
<tr>
<td><code>SetC0=F</code></td>
<td>F = C0 coefficient.</td>
</tr>
<tr>
<td><code>SetC1=F</code></td>
<td>F = C1 coefficient.</td>
</tr>
<tr>
<td><code>SetC2=F</code></td>
<td>F = C2 coefficient.</td>
</tr>
<tr>
<td><code>SetE=F</code></td>
<td>F = E coefficient.</td>
</tr>
<tr>
<td><code>SetSolB0=F</code></td>
<td>F = SolB0 coefficient.</td>
</tr>
<tr>
<td><code>SetSolB1=F</code></td>
<td>F = SolB1 coefficient.</td>
</tr>
<tr>
<td><code>SetSolB3=F</code></td>
<td>F = SolB3 coefficient.</td>
</tr>
<tr>
<td><code>SetSolC0=F</code></td>
<td>F = SolC0 coefficient.</td>
</tr>
<tr>
<td><code>SetRefSal=F</code></td>
<td>Reference salinity (psu) to use for oxygen calculation in converted units. Default 0. For moored application, enter approximate value expected for deployment. For profiling applications, enter 0, and correct oxygen for salinity effect in post-processing.</td>
</tr>
<tr>
<td><code>SetRefP=F</code></td>
<td>F = Reference pressure (decibars) to use for oxygen calculation in converted units. Default 0. For moored application, enter value expected for deployment. For profiling applications, enter 0, and correct oxygen for pressure effect in post-processing.</td>
</tr>
</tbody>
</table>

Note:
- `S` = integer
- `F` = floating point number
Data Formats

Note about units for converted oxygen:
Sea-Bird uses the following equations to convert oxygen to various engineering units:

\[
\text{[mg/L]} = \text{[ml/L]} \times 1.42903 \\
\text{[micromole/Kg]} = \text{[ml/L]} \times 44660 / (\sigma_{\theta}(P,T,S) + 1000)
\]

For the micromole/Kg conversion, there is disagreement in the scientific community about the conversion constant 44660:

- The value 44660 is exact for oxygen gas.
- The value 44615 is the average value for atmospheric gas (N2, O2, Ar, H2O, CO2,...). It is not exact for any individual gas, but has been used historically by oceanographers.

The argument distills to exact versus historic, with oceanographers split; Sea-Bird uses 44660 in all software calculations.

Notes:
- Each scan of data ends with a carriage return and line feed.
- Converted oxygen values (dissolved oxygen in ml/l) are dependent on the user-set SetRefSal= and SetRefP=.
- See Appendix I: Functional Description for details on the calibration equation and conversion of the raw data to dissolved oxygen in ml/l.

Following are the data formats:

- **SetFormat=0** – Converted oxygen and temperature with units:
 o.oooo ml/l, tt.tttt C
 where
 o.oooo = dissolved oxygen in ml/l
 tt.tttt = temperature in deg C

 Example: **SetFormat=0**
 4.3019 ml/l, 25.2556 C
 (converted oxygen, converted temperature)

- **SetFormat=1** (default) – SBE 41 (Argo) CTD, SeaCAT (16 plus V2, 16plus-iM V2, 19plus V2), and MicroCAT (37-SMP-ODO, 37-IMP-ODO, 37-SIP-ODO) compatible:
 aa.aaa, b.bbbb, o.oooo, tt.tttt where
 aa.aaa = raw phase delay (µsec)
 b.bbbb = raw thermistor voltage
 o.ooo = dissolved oxygen in ml/l
 tt.tttt = temperature in deg C

 Example: **SetFormat=1**
 16.6423, 0.641321, 4.308, 25.2553
 (raw phase delay, raw thermistor voltage, converted oxygen, converted temperature)
- **SetFormat=2** – Raw and converted data:

 \[
 01/01/11 \ 00:00:00 \ 660 \ \texttt{aaaa} \ 695 \ \texttt{bbbb} \ 570 \ \texttt{oooo} \ \texttt{tttt}
 \]

 where

 \[
 \texttt{aaaa} = \text{raw phase delay (x1000)}
 \]

 \[
 \texttt{bbbb} = \text{raw thermistor voltage (x65536/3.30)}
 \]

 \[
 \texttt{oooo} = \text{dissolved oxygen in ml/l (x1000)}
 \]

 \[
 \texttt{tttt} = \text{temperature in deg C (x1000)}
 \]

 Italic numbers are constants, not used in calculations

 Each field is separated by a tab character.

 \[
 \begin{array}{cccc}
 01/01/11 & 00:00:00 & 660 & 16649 \\
 695 & 12736 & 570 & 4303 \\
 25255 & & & \\
 \end{array}
 \]

 (information in italics are constants not used in calculations; remaining information is raw phase delay x1000, raw thermistor voltage x1000, converted oxygen x1000, converted temperature x1000)

- **SetFormat=3** – Instrument name, serial number, and converted oxygen:

 SBE63 \ ssss \ oo.ooo

 where

 \[
 \texttt{ssss} = \text{SBE 63 serial number}
 \]

 \[
 \texttt{oo.ooo} = \text{dissolved oxygen in ml/l (leading zero is not suppressed)}
 \]

 SBE63 and serial number are separated by a tab character; serial number and dissolved oxygen are separated by two tab characters.

 \[
 \begin{array}{c}
 \text{Example: SetFormat=3} \\
 \text{SBE63} \ 0013 \ 04.304 \\
 \end{array}
 \]

 (serial number, converted oxygen in ml/l)
Deployment

Note:
In the CTD, set:
• Pump mode to 2 (PumpMode=2).
• Delay before sampling (DelayBeforeSampling=) to 25 sec at 15 °C to 40 sec at 0 °C (linear interpolation between those values). This provides enough time for the SBE 63 to equilibrate after pumping begins, before the measurement is made.
In the CTD, the interval between samples (SampleInterval=) must be greater than or equal to the sum of the times required to sample. Total time is affected by the following:
 - Minimum time required for CTD to take a sample (≈ 2.5 sec).
 - Time required for integration of optional Quartz pressure sensor (ParosIntegration=).
 - Time required for CTD to take and average NCycles= samples; samples are taken 0.25 sec apart.
 - Delay after providing power to external sensors before sampling (DelayBeforeSampling=); described above.
 - Delay after sampling before turning off power to external sensors (DelayAfterSampling=).
For the 16plus-IM V2, commands are preceded by #ii (ii=ID).

Integration with SeaCAT CTD
(SBE 16plus V2, 16plus-IM V2, or 19plus V2)

Prior to installing the SBE 63 on the CTD, verify that the SBE 63 is set up as follows (see Section 3: Preparing SBE 63 for Deployment for details on communicating in Seaterm232; see Command Descriptions above for command details):
• SetBaud= to baud rate set in CTD (always 1200 for 16plus-IM V2)
• SetAvg=1 to 16; recommended value is 2
• SetFormat=1
• SetAutoRun=0

For use with the SBE 19plus V2 in Profiling mode, verify that <SerPause> in the GetSD or GetHD response is 1 (factory set). For the 19plus V2 in Moored mode, or for the other SeaCATs, <SerPause> can be set to 0 or 1.

Install on the CTD as follows:

1. Install the SBE 63 in the sensor mount:
 A. Align the 4-pin connectors and push the SBE 63 onto the mount.
 B. Install the two #10-24, 1/2” titanium cap screws from the back of the sensor mount to secure the SBE 63 in the mount.

2. Mount the SBE 63 on the CTD. Install Tygon tubing to connect the SBE 63 inline between the CTD conductivity cell outlet and the pump inlet. Verify that the large arrow on the sensor mount is pointing in the direction of the flow (flow enters through the conductivity cell, and exits from the pump).
3. Install the I/O cable on the SBE 63 sensor mount:
 A. Lightly lubricate the inside of the cable connector with silicone grease (DC-4 or equivalent).
 B. **Standard Connector** - Install the cable connector, aligning the raised bump on the side of the connector with the large pin (pin 1 - ground) on the SBE 63 sensor mount. Remove any trapped air by burping or gently squeezing the connector near the top and moving your fingers toward the end cap. **OR**
 C. **MCBH Connector** – Install the cable connector, aligning the pins.

4. Connect the I/O cable to the 4-pin RS-232 auxiliary sensor connector on the CTD, using the same technique as in Step 3 (see the CTD manual for the end cap detail).

5. Verify that the hardware and external fittings are secure.

The SBE 63 is ready to go into the water.

Integration with MicroCAT CTD
(SBE 37-SMP-ODO, 37-IMP-ODO, 37-SIP-ODO)

The SBE 63 is factory-integrated with the ODO MicroCAT. You can communicate with the SBE 63 through the MicroCAT with **Send63=command; command** can be any command recognized by the SBE 63. Verify that the SBE 63 is set up as follows by sending **Send63=GetSD** (see Command Descriptions above for command details):

- **SetBaud=2400** (factory set; cannot be changed by command through the MicroCAT)
- **SetAvg=1 to 16; recommended value is 2**
- **SetFormat=1**
- **SetAutoRun=0**

For use with the SBE 37-IMP-ODO, 37-SMP-ODO with RS-485 interface, and 37-SIP-ODO with RS-485 interface, verify that <SerPause> in the GetSD or GetHD response is 1 (factory set). For the other MicroCATs, <SerPause> can be set to 0 or 1.
Recovery

WARNING!
If the SBE 63 stops working while underwater, is unresponsive to commands, or shows other signs of flooding or damage, carefully secure it away from people until you have determined that abnormal internal pressure does not exist or has been relieved. Pressure housings may flood under pressure due to dirty or damaged o-rings, or other failed seals. When a sealed pressure housing floods at great depths and is subsequently raised to the surface, water may be trapped at the pressure at which it entered the housing, presenting a danger if the housing is opened before relieving the internal pressure. Instances of such flooding are rare. However, a housing that floods at 6300 meters depth holds an internal pressure of more than 7000 psia, and has the potential to eject the end cap with lethal force. A housing that floods at 63 meters holds an internal pressure of more than 85 psia; this force could still cause injury.

If you suspect the SBE 63 is flooded, point it in a safe direction away from people. Remove the SBE 63 from the sensor mount (if applicable). Very slowly unscrew the SBE 63 dome, letting the internal pressure bleed off slowly past the O-ring as the O-ring is released from the housing. Then, you can safely remove the dome.

Rinse the outside of the SBE 63 with fresh water.
Section 5: Routine Maintenance and Calibration

This section reviews corrosion precautions, connector mating and maintenance, sensor maintenance, and sensor calibration. The accuracy of the SBE 63 is sustained by establishing proper handling practices.

Corrosion Precautions

Rinse the SBE 63 with fresh water after use and prior to storage.

All exposed metal is titanium; other materials are plastic. No corrosion precautions are required, but direct electrical connection of titanium to dissimilar metal hardware should be avoided.

Connector Mating and Maintenance

Note:
See Application Note 57: Connector Care and Cable Installation for the connection to the optional sensor mount.

CAUTION:
Do not use WD-40 or other petroleum-based lubricants, as they will damage the connector.

Optional Sensor Mount:

Clean and inspect the connectors, cable, and dummy plug before every deployment and as part of your yearly equipment maintenance. Inspect connectors that are unmated for signs of corrosion product around the pins, and for cuts, nicks or other flaws that may compromise the seal.

When remating:

1. Lightly lubricate the inside of the cable connector with silicone grease (DC-4 or equivalent).

2. **Standard Connector** - Install the cable connector, aligning the raised bump on the side of the cable connector with the large pin (pin 1 - ground) on the SBE 63. Remove any trapped air by burping or gently squeezing the connector near the top and moving your fingers toward the end cap. **OR**
 MCBH Connector – Install the cable connector, aligning the pins.

3. Place the locking sleeve over the cable connector. Tighten the locking sleeve finger tight only. **Do not overtighten the locking sleeve and do not use a wrench or pliers.**

Verify that a cable is installed before deployment.
Sensor Maintenance

Procedures

Avoid fouling the optical window with oil or grease as this causes a calibration shift. An oil-fouled window can be cleaned using the following procedures.

- **Preventive Field Maintenance Between Profiles:** After each cast, flush with a 0.1% solution of Triton X-100, using a 60 cc syringe (see Application Note 34). Then rinse thoroughly with fresh water. Between casts, ensure that the sensor remains shaded from direct sunlight and stays within the recommended temperature range.

- **Routine (post-cruise) Cleaning (no visible deposits or marine growths on sensor)** — Follow this two-step procedure:
 1. **Flush** the sensor for 1 minute with a 1% solution of Triton X-100 warmed to 30 ºC (86 ºF). **Drain and flush** with warm (not hot) fresh water for 5 minutes.
 2. **Soak** the sensor for 1 minute in a 500 - 1000 ppm solution of Bleach. After the soak, **drain and flush** with warm (not hot) fresh water for 5 minutes.

- **Cleaning severely fouled sensors (visible deposits or marine growths on sensor):** Soak the sensor in de-ionized water overnight to loosen deposits. Repeat the Routine Cleaning procedure up to 5 times. Do not attempt to clean the optical window with high pressure flow or by wiping or touching the window.

- **Long-Term Storage (after field use):** Do not fill the sensor with water, Triton solution, or Bleach solution. Store dry.
 o **If there is danger of freezing,** shake all excess water out of the sensor. If in the optional sensor mount, loop tubing from inlet to outlet, leaving the optical window dry.

Materials

- **Triton X-100** - 100% Triton X-100 is included with every CTD shipment and may be ordered from Sea-Bird; dilute as directed above. Triton X-100 is Octyl Phenol Ethoxylate, a mild, non-ionic surfactant (detergent), and is manufactured by Avantor Performance Materials (see http://avantormaterials.com/commerce/product.aspx?id=2147509608). Other liquid detergents can probably be used, but scientific grades (with no colors, perfumes, glycerins, lotions, etc.) are required.

- **Bleach** - Bleach is a common household product used to whiten and disinfect laundry. Commercially available bleach is typically 4% - 7% (40,000 – 70,000 ppm) sodium hypochlorite (Na-O-Cl) solution that includes stabilizers. Some common commercial product names are Clorox (U.S.) and eau de Javel (French). Clean the SBE 63 with a 500 - 1000 ppm solution of water and sodium hypochlorite. **Dilute** the concentrated household bleach to 50 to 1 (50 parts water to 1 part bleach) to produce the proper concentration to clean the oxygen sensor.

- **Water** – We recommend de-ionized (DI) water because it is reliably pure, but commercially distilled water or fresh clean tap water is also sufficient for all uses above. **On ships, fresh water can occasionally contain traces of oil and should not be used for rinsing, cleaning, or storing sensors, unless there is no alternative.**

CAUTIONS:
- During service and storage, maintain temperatures between 0 - 40 ºC (32 – 104 ºF).
- Do not use stronger solutions or longer wash times than recommended.
- Do not place Triton or bleach directly on the optical window.
Sensor Calibration

Each SBE 63 is calibrated individually in a temperature-controlled bath. Bath temperatures are varied at each of 4 oxygen values, providing a comprehensive 24-point calibration. Two reference sensors in each bath are standardized against Winkler titrations. Response time tests are conducted on each sensor, using gas. Salinity and pressure impacts on sensor response are each checked at two separate points.

The SBE 63 calibration coefficients are printed on the Calibration Certificate supplied with the sensor. These coefficients have also been stored in the SBE 63, allowing the SBE 63 to directly output dissolved oxygen in ml/l.

When used on a Sea-Bird CTD (SBE 16 plus V2, 16 plus-IM V2, 19 plus V2, 37-SMP-ODO, 37-IMP-ODO, 37-SIP-ODO), dissolved oxygen can be calculated in other units in post-processing.

The primary mechanism for calibration drift in optical oxygen sensors is the fouling of the optical window by chemical or biological deposits. Accordingly, the most important determinant of long-term sensor accuracy is the cleanliness of the window. We recommend that oxygen sensors be calibrated before and after deployment, but particularly when the sensor has been exposed to contamination by oil slicks or biological material.

Another important mechanism for oxygen sensor drift is photobleaching of the sensor film. Keep the SBE 63 sensor film out of direct sunlight. Also, every sample that is taken illuminates the film with short wavelength light that eventually degrades the film. As a rule of thumb, re-calibration of the oxygen sensor is recommended after 300,000 to 500,000 samples.

Note:
See Appendix I: Functional Description for details on the calibration equation.
Section 6: Troubleshooting

This section reviews common problems in operating the SBE 63, and provides the most likely causes and solutions.

Problem 1: Unable to Communicate with SBE 63

<table>
<thead>
<tr>
<th>Notes:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• You can use any terminal program to set up the SBE 63; set it to 8 data bits, no parity, 1 stop bit, and 9600 baud (default SBE 63 baud rate). Instructions here are for using SeatermV2.</td>
</tr>
<tr>
<td>• See SeatermV2’s Help files.</td>
</tr>
</tbody>
</table>

The $>$ prompt indicates that communications between the SBE 63 and computer have been established. Before proceeding with troubleshooting, attempt to establish communications again by clicking Connect in the Communications menu in Seaterm232.

Cause/Solution 1: The I/O cable connection may be loose. Check the cabling between the SBE 63 and computer for a loose connection.

Cause/Solution 2: The instrument type and/or its communication settings may not have been entered correctly in the terminal program. Verify the settings in the Serial Port Configuration dialog box (Communications menu -> Configure). The settings should match those on the instrument Configuration Sheet.

Cause/Solution 3: The I/O cable may not be the correct one.
• The I/O cable supplied with the SBE 63’s optional sensor mount permits connection to standard 9-pin RS-232 interfaces. See Dimensions and Connector in Section 2: Description of SBE 63 for the cable pinouts.

Problem 2: Unreasonable Data

The symptom of this problem is data that contains unreasonable values (for example, values that are outside the expected range of the data).

Cause/Solution 1: Data with unreasonable values may be caused by incorrect calibration coefficients in the SBE 63 (if looking at data output in converted format). Verify the calibration coefficients in the SBE 63, using GetCC.

Cause/Solution 2 (MicroCATs only): A data file with unreasonable values for dissolved oxygen may be caused by incorrect calibration coefficients in the MicroCAT (SBE 37-SMP-ODO, 37-IMP-ODO, 37-SIP-ODO). Send GetCC to verify the oxygen calibration coefficients in the MicroCAT match the SBE 63 Calibration Certificates. Note that calibration coefficients do not affect the raw data stored in MicroCAT memory.
• If you have not yet overwritten the memory with new data, you can correct the coefficients and then upload the data again.
• If you have overwritten the memory with new data, you can manually correct the coefficients in the .xmlcon configuration file (which is generated when you upload the data from memory), and then reprocess the data in SBE Data Processing’s Data Conversion module.
Causes/Solutions 3 (SeaCATs only): A data file with nonsense values may be caused by incorrect instrument configuration of the SeaCAT (SBE 16 plus V2, 16 plus-IM V2, or 19 plus V2):

- Bad data may be caused by incorrect setup in the CTD. Send `GetCD` or `DS to the CTD` to verify the CTD setup (SBE 63 is enabled for the RS-232 auxiliary sensor channel).
- Bad data may be caused by incorrect configuration in the instrument configuration file, and/or incorrect calibration coefficients in the instrument configuration file. Verify the settings in the configuration file.

Note:
Each SeaCAT CTD is shipped with a configuration file that matches the configuration of the instrument (number and type of auxiliary sensors, etc.) and includes the instrument calibration coefficients.
Glossary

PCB – Printed Circuit Board.

SBE 63 – High-accuracy Optical Dissolved Oxygen Sensor.

SBE Data Processing – Sea-Bird’s Windows data processing software, which calculates and plots temperature, conductivity, and optional internally mounted pressure, data from auxiliary sensors, and derived variables such as salinity and sound velocity.

Scan – One data sample.

SeaCAT – High-accuracy conductivity, temperature, and pressure recorder. Firmware versions of the V2 SeaCAT developed in February 2012 and later are compatible with the SBE 63. The V2 SeaCAT is available in three versions:
- 16plus V2 with RS-232 interface
- 16plus-IM V2 with inductive modem interface
- 19plus V2 with RS-232 interface

Seasave V7 – Sea-Bird’s Windows software used to acquire, convert, and display real-time or archived raw data.

Seasoft V2 – Sea-Bird’s complete Windows software package, which includes software for communication, real-time data acquisition, and data analysis and display. Seasoft V2 includes SeatermV2, Seasave V7, and SBE Data Processing.

SeatermV2 – Windows terminal program launcher. Depending on the instrument selected, it launches Seaterm232 (RS-232 instruments), Seaterm485 (RS-485 instruments), SeatermIM (inductive modem instruments), or SeatermUSB (USB instruments).

Seaterm232 – Windows terminal program used with Sea-Bird instruments that communicate via an RS-232 interface, and that were developed or redesigned in 2006 and later. The common feature of these instruments is the ability to output data in XML.

Triton X-100 – Reagent grade non-ionic surfactant (detergent), used for cleaning the conductivity cell. Triton can be ordered from Sea-Bird, but should also be available locally from chemical supply or laboratory products companies. Triton is manufactured by Avantor Performance Materials (www.avantormaterials.com/commerce/product.aspx?id=2147509608).

Note: All Sea-Bird software listed was designed to work with a computer running Windows XP service pack 2 or later, Windows Vista, or Windows 7.
Appendix I: Functional Description

The SBE 63’s luminescence decay time decreases non-linearly with increasing oxygen concentration. Because the phase delay between excited and emitted signals is shifted as a function of the ambient oxygen concentration, the phase delay is detected instead of the decay time. The signal is characterized by a modified Stern-Volmer equation as follows:

\[O_2 (\text{ml/L}) = \frac{[(a_0 + a_1 T + a_2 V^2) / (b_0 + b_1 V) - 1]}{K_{sv}} \times \text{SCorr} \times \text{PCorr} \]

where
- \(O_2 \) is oxygen concentration (ml/L)
- \(T \) is temperature output from SBE 63’s thermistor in °C
- \(V \) is raw measured phase delay in volts = \(\phi_r / 39.457071 \) (see Note)
- \(\phi_r \) is raw measured phase delay in µsec (output when \text{SetFormat}=1)
- \(a_0, a_1, a_2, b_0, b_1 \) are calibration coefficients (Uchida et al, 2008)
- \(K_{sv} \) is Stern-Volmer constant (with calibration coefficients \(c_0, c_1, c_2 \) (Demas et al, 1999)
- \(\text{SCorr} \) is salinity correction function (with calibration coefficients \(S_{b0}, S_{b1}, S_{b2}, S_{b3} \))
- \(\text{PCorr} \) is pressure correction function (with calibration coefficient \(E \))

The Stern-Volmer constant equation is:

\[K_{sv} = c_0 + c_1 T + c_2 T^2 \]

where
- \(c_0, c_1, c_2 \) are calibration coefficients
- \(T \) is temperature output from SBE 63’s thermistor in °C

The salinity correction equation is:

\[S_{corr} = \exp \left[S \times (S_{b0} + S_{b1} \times T_s + S_{b2} \times T_s^2 + S_{b3} \times T_s^3) + S_{c0} \times S^2 \right] \]

where
- Salinity correction coefficients are constants (Benson and Krause, 1984) -
 - \(S_{b0} = -6.24523e^{-3} \)
 - \(S_{b1} = -7.37614e^{-3} \)
 - \(S_{b2} = -1.03410e^{-2} \)
 - \(S_{b3} = -8.17083e^{-3} \)
 - \(S_{c0} = -4.88682e^{-7} \)
 - \(T_s = \ln \left[\frac{298.15 - T}{273.15 + T} \right] \)
 - \(T \) is temperature output from SBE 63’s thermistor in °C
- \(S \) = salinity
 - For oxygen in ml/l output directly from SBE 63, \text{SetRefSal} is used as the salinity value in the salinity correction equation.
 - When the SBE 63 is integrated with a CTD (SeaCAT, MicroCAT, or Argo CTD), \textbf{salinity calculated from the CTD data} should be used to calculate converted oxygen (ml/L, mg/L, etc.).
 - SeaCAT CTDs output raw phase delay and temperature from an integrated SBE 63. Sea-Bird software automatically uses the salinity from the CTD data if calculating converted oxygen output in Seasave real-time data acquisition software or SBE Data Processing post-processing software.
 - MicroCAT CTDs can output raw phase delay and temperature or converted oxygen in ml/L from an integrated SBE 63, depending on the user-selected output format in the MicroCAT. For converted oxygen in ml/L, the MicroCAT firmware automatically uses the salinity from the CTD data. Sea-Bird software automatically uses the salinity from the CTD data if calculating converted oxygen output in SBE Data Processing post-processing software.

Note: Sea-Bird software performs these calculations automatically. This information is included for users who are developing their own software.

Note: Calibration sheets generated after July 2012 include information on the conversion between phase delay in µsec and volts. Although this information was not shown on earlier calibration sheets, the same conversion is applicable:
- Divide the phase delay output (µsec) by 39.457071 to get output in volts, and use the output in volts in the calibration equation.

Note: Sea-Bird software performs these calculations automatically. This information is included for users who are developing their own software.
The pressure correction equation is:

$$ P_{corr} = \exp \left(E \times \frac{P}{K} \right) $$

where

- Pressure correction coefficient is constant - $E = 0.011$
- $K = \text{temperature in Kelvin} = T + 273.15$
 where T is temperature output from SBE 63’s thermistor in °C
- $P = \text{pressure (dbar) from CTD data}$
 - For oxygen in ml/l output directly from the SBE 63, $SetRefP=$ is used as the pressure value in the pressure correction equation.
 - When the SBE 63 is integrated with a CTD (SeaCAT, MicroCAT, or Argo CTD), pressure calculated from the CTD data should be used to calculate converted oxygen (ml/L, mg/L, etc.).
 - SeaCAT CTDs output raw phase delay and temperature from an integrated SBE 63. Sea-Bird software automatically uses the pressure from the CTD data if calculating converted oxygen output in Seasave real-time data acquisition software or SBE Data Processing post-processing software.
 - MicroCAT CTDs can output raw phase delay and temperature or converted oxygen in ml/L from an integrated SBE 63, depending on the user-selected output format in the MicroCAT. For converted oxygen in ml/L, the MicroCAT firmware automatically uses the pressure from the CTD data. Sea-Bird software automatically uses the pressure from the CTD data if calculating converted oxygen output in SBE Data Processing post-processing software.

Sea-Bird provides two calibration sheets with each SBE 63 –

- One relates the SBE 63 oxygen sensor output to oxygen concentration in ml/L – with coefficients a_0, a_1, a_2, b_0, b_1, c_0, c_1, c_2, and E.
- One relates the SBE 63 thermistor output to temperature (°C) – with coefficients t_{a0}, t_{a1}, t_{a2}, t_{a3}

Examples of both calibration sheets are shown on the next two pages.
Example Calibration Sheet – SBE 63 Oxygen Output (Phase Delay µsec)

SBE 63 Oxygen Output Data

Sensor Serial Number: 0743

Calibration Date: 14-Sep-12

Coefficient Values:

<table>
<thead>
<tr>
<th>A0</th>
<th>B0</th>
<th>C0</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0513e+000</td>
<td>-2.4323e-001</td>
<td>1.0912e-001</td>
<td>1.1000e-002</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A1</th>
<th>B1</th>
<th>C1</th>
<th>C2</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1.5000e-003</td>
<td>1.6036e+000</td>
<td>4.6500e-003</td>
<td>6.2813e-005</td>
</tr>
</tbody>
</table>

Data Table:

<table>
<thead>
<tr>
<th>Bath O2 (mL/L)</th>
<th>Bath Temp ITS-90</th>
<th>Bath Sal PSU</th>
<th>Instrument Output U</th>
<th>Instrument O2 (mL/L)</th>
<th>Residual (mL/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.888</td>
<td>30.00</td>
<td>0.00</td>
<td>29.40</td>
<td>0.895</td>
<td>0.0007</td>
</tr>
<tr>
<td>0.921</td>
<td>26.00</td>
<td>0.00</td>
<td>30.19</td>
<td>0.925</td>
<td>0.0004</td>
</tr>
<tr>
<td>0.970</td>
<td>20.00</td>
<td>0.00</td>
<td>31.34</td>
<td>0.971</td>
<td>0.0001</td>
</tr>
<tr>
<td>1.063</td>
<td>12.00</td>
<td>0.00</td>
<td>32.84</td>
<td>1.061</td>
<td>-0.0002</td>
</tr>
<tr>
<td>1.169</td>
<td>6.00</td>
<td>0.00</td>
<td>33.89</td>
<td>1.170</td>
<td>-0.0005</td>
</tr>
<tr>
<td>1.223</td>
<td>2.00</td>
<td>0.00</td>
<td>34.78</td>
<td>1.219</td>
<td>-0.0010</td>
</tr>
<tr>
<td>2.387</td>
<td>30.00</td>
<td>0.00</td>
<td>21.94</td>
<td>2.395</td>
<td>0.0008</td>
</tr>
<tr>
<td>2.528</td>
<td>26.00</td>
<td>0.00</td>
<td>22.48</td>
<td>2.539</td>
<td>0.0017</td>
</tr>
<tr>
<td>2.664</td>
<td>20.00</td>
<td>0.00</td>
<td>23.68</td>
<td>2.676</td>
<td>0.0009</td>
</tr>
<tr>
<td>3.167</td>
<td>12.00</td>
<td>0.00</td>
<td>24.69</td>
<td>3.174</td>
<td>0.0006</td>
</tr>
<tr>
<td>3.603</td>
<td>6.00</td>
<td>0.00</td>
<td>25.64</td>
<td>3.610</td>
<td>0.0007</td>
</tr>
<tr>
<td>3.855</td>
<td>30.00</td>
<td>0.00</td>
<td>18.29</td>
<td>3.845</td>
<td>-0.0010</td>
</tr>
<tr>
<td>3.924</td>
<td>2.00</td>
<td>0.00</td>
<td>26.41</td>
<td>3.918</td>
<td>-0.0006</td>
</tr>
<tr>
<td>4.107</td>
<td>26.00</td>
<td>0.00</td>
<td>18.32</td>
<td>4.105</td>
<td>-0.0012</td>
</tr>
<tr>
<td>4.542</td>
<td>20.00</td>
<td>0.00</td>
<td>19.45</td>
<td>4.543</td>
<td>0.0013</td>
</tr>
<tr>
<td>5.288</td>
<td>12.00</td>
<td>0.00</td>
<td>20.53</td>
<td>5.287</td>
<td>-0.0002</td>
</tr>
<tr>
<td>5.471</td>
<td>26.00</td>
<td>0.00</td>
<td>16.65</td>
<td>5.464</td>
<td>-0.0008</td>
</tr>
<tr>
<td>5.761</td>
<td>30.00</td>
<td>0.00</td>
<td>15.47</td>
<td>5.764</td>
<td>0.0003</td>
</tr>
<tr>
<td>6.036</td>
<td>6.00</td>
<td>0.00</td>
<td>21.40</td>
<td>6.026</td>
<td>0.0010</td>
</tr>
<tr>
<td>6.454</td>
<td>20.00</td>
<td>0.00</td>
<td>16.86</td>
<td>6.450</td>
<td>0.0003</td>
</tr>
<tr>
<td>6.658</td>
<td>2.00</td>
<td>0.00</td>
<td>22.08</td>
<td>6.590</td>
<td>-0.0018</td>
</tr>
<tr>
<td>7.555</td>
<td>12.00</td>
<td>0.00</td>
<td>17.78</td>
<td>7.551</td>
<td>-0.0004</td>
</tr>
<tr>
<td>8.582</td>
<td>6.00</td>
<td>0.00</td>
<td>18.60</td>
<td>8.588</td>
<td>0.0005</td>
</tr>
<tr>
<td>9.309</td>
<td>2.01</td>
<td>0.00</td>
<td>19.27</td>
<td>9.324</td>
<td>0.0015</td>
</tr>
</tbody>
</table>

Equation

\[V = \frac{U}{39.457071} \]

\[\text{Oxygen (mL/L)} = \left((A0 + A1 \cdot T + A2 \cdot V^2) / (B0 + B1 \cdot V) - 1.0 \right) \left(C0 + C1 \cdot T + C2 \cdot T^2 \right) \exp(E \cdot P / K) \]

\[T = \text{temperature [deg C]}, \quad K = \text{temperature [Kelvin]}, \quad P = \text{pressure [dbar]} \]

Residual Calculation

Residual = Instrument oxygen - Bath oxygen

Graph

The graph shows the residual values against oxygen concentration, indicating a nearly linear relationship with minimal deviation from the line of best fit.

Date, Delta Ox (mL/L):

- **14-Sep-12 1.0000**
Example Calibration Sheet – SBE 63 Temperature Output

Sea-Bird Electronics, Inc.
13431 NE 20th Street, Bellevue, WA 98005-2010 USA
Phone: (+1) 425-643-9866 Fax (+1) 425-643-9954 Email: seabird@seabird.com

SENSOR SERIAL NUMBER: 0242
CALIBRATION DATE: 14-Sep-12

SBE 63 OXYGEN CALIBRATION DATA

COEFFICIENTS
TA0 = 6.711077e-004 TA2 = 8.228029e-007
TA1 = 2.480232e-004 TA3 = 9.213712e-008

<table>
<thead>
<tr>
<th>BATH TEMP (ITS-90)</th>
<th>INSTRUMENT OUTPUT</th>
<th>INST TEMP (ITS-90)</th>
<th>RESIDUAL (ITS-90)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.0000</td>
<td>1.26912</td>
<td>2.0001</td>
<td>0.00014</td>
</tr>
<tr>
<td>2.0001</td>
<td>1.26912</td>
<td>2.0001</td>
<td>0.00004</td>
</tr>
<tr>
<td>2.0108</td>
<td>1.26876</td>
<td>2.0106</td>
<td>-0.00020</td>
</tr>
<tr>
<td>6.0000</td>
<td>1.13620</td>
<td>5.9999</td>
<td>-0.00005</td>
</tr>
<tr>
<td>6.0000</td>
<td>1.13620</td>
<td>5.9999</td>
<td>-0.00005</td>
</tr>
<tr>
<td>6.0000</td>
<td>1.13620</td>
<td>5.9999</td>
<td>-0.00005</td>
</tr>
<tr>
<td>11.9999</td>
<td>0.95559</td>
<td>11.9999</td>
<td>-0.00001</td>
</tr>
<tr>
<td>12.0000</td>
<td>0.95559</td>
<td>11.9999</td>
<td>-0.00011</td>
</tr>
<tr>
<td>12.0001</td>
<td>0.95558</td>
<td>12.0003</td>
<td>0.00015</td>
</tr>
<tr>
<td>19.9999</td>
<td>0.75137</td>
<td>20.0002</td>
<td>0.00026</td>
</tr>
<tr>
<td>19.9999</td>
<td>0.75138</td>
<td>19.9997</td>
<td>-0.00018</td>
</tr>
<tr>
<td>20.0000</td>
<td>0.75137</td>
<td>20.0002</td>
<td>0.00016</td>
</tr>
<tr>
<td>26.0000</td>
<td>0.62467</td>
<td>25.9999</td>
<td>-0.00015</td>
</tr>
<tr>
<td>26.0000</td>
<td>0.62467</td>
<td>25.9999</td>
<td>-0.00015</td>
</tr>
<tr>
<td>30.0000</td>
<td>0.55173</td>
<td>30.0001</td>
<td>0.00009</td>
</tr>
<tr>
<td>30.0000</td>
<td>0.55173</td>
<td>30.0001</td>
<td>0.00009</td>
</tr>
</tbody>
</table>

Temperature ITS-90 = 1 / (TA0 + TA1 * L + TA2 * L^2 + TA3 * L^3) - 273.15 (°C)
L = ln (100000 * V / (3.3 - V))
V = thermistor voltage
Residual = instrument temperature - bath temperature

Date, Delta Ox (mL)
14-Sep-12 0.00
Appendix II: Installation/Removal from Optional Sensor Mount

Installation

1. Align the 4-pin connectors and push the SBE 63 onto the mount.

2. Install the two #10-24, 1/2” titanium cap screws from the back of the sensor mount to secure the SBE 63 in the mount.

Removal

1. Remove the two #10-24, 1/2” titanium cap screws from the back of the sensor mount that secure the SBE 63 in the mount.

2. Pull the SBE 63 straight out of the sensor mount. If it is difficult to remove:
 - Use a rubber glove to provide a better grip as you pull. **OR**
 - Insert one of the cap screws in the sensor mount, and thread it just one or two turns. Push the head of the screw with a driver; this will push against the housing and free the O-ring seal. Remove the cap screws, and then pull the SBE 63 straight out of the sensor mount.
Appendix III: Command Summary

<table>
<thead>
<tr>
<th>Category</th>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Status</td>
<td>GetSD</td>
<td>Get and display Configuration Data.</td>
</tr>
<tr>
<td></td>
<td>GetHD</td>
<td>Get and display Hardware Data.</td>
</tr>
<tr>
<td></td>
<td>GetCC</td>
<td>Get and display Calibration Coefficients.</td>
</tr>
<tr>
<td>Setup</td>
<td>SetBaud=x</td>
<td>x= Baud rate (600, 1200, 2400, 4800, 9600, 14400, 19200, 38400, 56000, 57600, 115200). Default 9600.</td>
</tr>
<tr>
<td></td>
<td>SetFormat=x</td>
<td>x=0: Converted oxygen and temperature (with units). x=1: Raw phase delay and thermistor voltage, converted oxygen and temperature (no units), for compatibility with SBE 41 (Argo) CTD, SeaCATs (16plus V2, 16plus-IM V2, 19plus V2), and MicroCATs (37-SMP-ODO, 37-IMP-ODO, 37-SIP-ODO). Default. x=2: Raw and converted data. x=3: Instrument name, serial number, and converted data.</td>
</tr>
<tr>
<td></td>
<td>SetBootDelay=x</td>
<td>x= delay after power is applied before sampling (1 - 255 sec). Default 1. Only applicable if AutoRun=1.</td>
</tr>
<tr>
<td></td>
<td>SetInterval=x</td>
<td>x= interval (seconds) between samples (1 – 32,767) for autonomous sampling. Default 4.</td>
</tr>
<tr>
<td></td>
<td>SetAvg=x</td>
<td>x= number of measurements to average per sample (1–64, or 1–32 for 1Hz sampling); each measurement takes approximately 0.03 sec. Increasing SetAvg= may shorten sensor film life. Default 2.</td>
</tr>
<tr>
<td></td>
<td>SetAutoRun=x</td>
<td>x=0: Wait for command when power is applied. Default. x=1: Begin sampling when power is applied. First sample is taken after SetBootDelay=.</td>
</tr>
<tr>
<td></td>
<td>*Default</td>
<td>Reset most Setup parameters to factory defaults. Note that baud (SetBaud=) is not reset.</td>
</tr>
<tr>
<td>Sampling</td>
<td>Start or Go</td>
<td>Start autonomous sampling at rate set by SetInterval=. To stop autonomous sampling, click Esc or send Stop (which then allows you to enter status or setup commands), or remove power.</td>
</tr>
<tr>
<td></td>
<td>Stop</td>
<td>Stop autonomous sampling.</td>
</tr>
<tr>
<td></td>
<td>TS</td>
<td>Take 1 sample, transmit data in format defined by SetFormat=.</td>
</tr>
<tr>
<td></td>
<td>TSR</td>
<td>Take 1 sample, transmit data in raw format (for factory diagnostics).</td>
</tr>
<tr>
<td></td>
<td>Coefficients</td>
<td>(F=) floating point number; (S=) string with no spaces)</td>
</tr>
<tr>
<td></td>
<td>SetCalDate=S</td>
<td>S= calibration date (number of days since January 1, 2000).</td>
</tr>
<tr>
<td></td>
<td>SetTA0=F</td>
<td>F= TA0 coefficient.</td>
</tr>
<tr>
<td></td>
<td>SetTA1=F</td>
<td>F= TA1 coefficient.</td>
</tr>
<tr>
<td></td>
<td>SetTA2=F</td>
<td>F= TA2 coefficient.</td>
</tr>
<tr>
<td></td>
<td>SetTA3=F</td>
<td>F= TA3 coefficient.</td>
</tr>
<tr>
<td></td>
<td>SetA0=F</td>
<td>F= A0 coefficient.</td>
</tr>
<tr>
<td></td>
<td>SetA1=F</td>
<td>F= A1 coefficient.</td>
</tr>
<tr>
<td></td>
<td>SetA2=F</td>
<td>F= A2 coefficient.</td>
</tr>
<tr>
<td></td>
<td>SetB0=F</td>
<td>F= B0 coefficient.</td>
</tr>
<tr>
<td></td>
<td>SetB1=F</td>
<td>F= B1 coefficient.</td>
</tr>
<tr>
<td></td>
<td>SetC0=F</td>
<td>F= C0 coefficient.</td>
</tr>
<tr>
<td></td>
<td>SetC1=F</td>
<td>F= C1 coefficient.</td>
</tr>
<tr>
<td></td>
<td>SetC2=F</td>
<td>F= C2 coefficient.</td>
</tr>
<tr>
<td></td>
<td>SetE=F</td>
<td>F= E coefficient.</td>
</tr>
<tr>
<td></td>
<td>SetSolB0=F</td>
<td>F= SolB0 coefficient.</td>
</tr>
<tr>
<td></td>
<td>SetSolB1=F</td>
<td>F= SolB1 coefficient.</td>
</tr>
<tr>
<td></td>
<td>SetSolB3=F</td>
<td>F= SolB3 coefficient.</td>
</tr>
<tr>
<td></td>
<td>SetSolC0=F</td>
<td>F= SolC0 coefficient.</td>
</tr>
<tr>
<td></td>
<td>SetRefSal=F</td>
<td>F= Reference salinity (psu) to use for oxygen calculation in converted units. Default 0. For moorings, enter approximate value expected for deployment. For profiling, enter 0, and correct for salinity in post-processing.</td>
</tr>
<tr>
<td></td>
<td>SetRefP=F</td>
<td>F= Reference pressure (dbar) to use for oxygen calculation in converted units. Default 0. For moorings, enter approximate value expected for deployment. For profiling, enter 0, and correct for pressure in post-processing.</td>
</tr>
</tbody>
</table>
Appendix IV: Replacement Parts

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Part Description</th>
<th>Application Description</th>
<th>Quantity in SBE 63</th>
</tr>
</thead>
<tbody>
<tr>
<td>802096</td>
<td>Sensor mount with standard (XSG) connector</td>
<td>For mounting on and integration with SBE 16plus V2, 16plus-IM V2, or 19plus V2</td>
<td>-</td>
</tr>
<tr>
<td>802127</td>
<td>Sensor mount with optional wet-pluggable (MCBH) connector</td>
<td>For mounting on and integration with SBE 16plus V2, 16plus-IM V2, or 19plus V2</td>
<td>-</td>
</tr>
<tr>
<td>311133</td>
<td>#10-24 cap screws, 1/2” length, titanium</td>
<td>Secure SBE 63 in optional sensor mount</td>
<td>-</td>
</tr>
</tbody>
</table>
Appendix V: Manual Revision History

<table>
<thead>
<tr>
<th>Manual Version</th>
<th>Date</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>001</td>
<td>02/12</td>
<td>- Initial release of production units.</td>
</tr>
</tbody>
</table>
| 002 | 05/12| - Firmware 1.1: Update status responses to show setting for new command *serpause = \ (factory setting).
- Add information on use with SBE 37 MicroCATs (SMP-ODO, IMP-ODO, SIP-ODO).
- Remove information that SBE 19\textit{plus} V2 must be in moored mode for use with the SBE 63 (it can be moored or profiling mode).
- Add information on photobleaching to Sensor Calibration in Section 6.
- Add information on Triton-X to glossary.
- Correct typos. |
| 003 | 06/12| - Correct units in specification -- correct units are µmol/kg, not µM/kg.
- Maximum depth rating 7000 m, not 5000 m.
- Update initial accuracy specification.
- Add example calibration sheets, and information on converting data output to engineering units if not using Sea-Bird software.
- For integration with Argo float CTD, add information that RS-232 interface required in float controller.
- For integration with RS-485 MicroCAT CTD, add information on required <SerPause> setting.
- Add troubleshooting case for incorrect calibration coefficients in MicroCAT integrated with SBE 63.
- Add information on limitations with high baud rates. |
| 004 | 01/13| - Firmware 2.0.0: Update GetHD response.
- Clarify that the raw output is the phase \textit{delay}.
- Update information on software compatibility.
- Correct typos. |
Index

A
Averaging · 24

B
Baud · 24

C
Calibration · 7, 34, 38
Calibration coefficient commands · 26
CE certification · 3
Command summary · 43
Commands
 calibration coefficients · 26
 descriptions · 20
 operating · 25
 polled sampling · 16
 sampling · 25
 setup · 24
 status · 21
Communication defaults · 13
Connector · 9, 32
Corrosion precautions · 32

D
Data format · 27
Data output format · 24
Declaration of Conformity · 3
Deployment · 29
 preparing for · 10
Description · 7
Dimensions · 9
Disassembly/reassembly · 42

E
End cap · 32

F
Format · 24, 27
Functional description · 38

G
Glossary · 37

I
Interval · 24

L
Limited liability statement · 2

M
Maintenance · 32, 33
Manual revision history · 45
Modes · See Sampling modes
Mount · 42

O
Operating commands · 25
Output format · 24, 27

P
Parts
 replacement · 44
Power · 8

Q
Quick start · 5

R
Recovery · 31
Replacement parts · 44
Revision history · 45

S
Sample interval · 24
Sampling · 7
Sampling commands · 25
Sampling modes · 16
 autonomous · 18
 polled · 16
Seasoft · 8, 10
Seaterm · 8
Seaterm232 · 11
SeatermV2 · 10, 11
Sensor · 8
Sensor mount · 42
Setup commands · 24
Software · 8
Software installation · 10
Specifications · 8
Status commands · 21

T
Terminal program · 10, 11
Testing · 10
Triton · 37
Troubleshooting · 35

U
Unpacking SBE 63 · 6

V
Versions · 45

W
Wiring · 10